Background: In 1985, a bat researcher in Finland died of rabies encephalitis caused by European bat lyssavirus type 2 (EBLV-2), but an epidemiological study in 1986 did not reveal EBLV-infected bats. In 2009, an EBLV-2-positive Daubenton's bat was detected. The EBLV-2 isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related. In order to assess the prevalence of EBLVs in Finnish bat populations and to gain a better understanding of the public health risk that EBLV-infected bats pose, a targeted active surveillance project was initiated.
Results: Altogether, 1156 bats of seven species were examined for lyssaviruses in Finland during a 28-year period (1985-2012), 898 in active surveillance and 258 in passive surveillance, with only one positive finding of EBLV-2 in a Daubenton's bat in 2009. In 2010-2011, saliva samples from 774 bats of seven species were analyzed for EBLV viral RNA, and sera from 423 bats were analyzed for the presence of bat lyssavirus antibodies. Antibodies were detected in Daubenton's bats in samples collected from two locations in 2010 and from one location in 2011. All seropositive locations are in close proximity to the place where the EBLV-2 positive Daubenton's bat was found in 2009. In active surveillance, no EBLV viral RNA was detected.
Conclusions: These data suggest that EBLV-2 may circulate in Finland, even though the seroprevalence is low. Our results indicate that passive surveillance of dead or sick bats is a relevant means examine the occurrence of lyssavirus infection, but the number of bats submitted for laboratory analysis should be higher in order to obtain reliable information on the lyssavirus situation in the country.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846527 | PMC |
http://dx.doi.org/10.1186/1746-6148-9-174 | DOI Listing |
Wellcome Open Res
March 2024
School of Biology, University of St Andrews, St Andrews, Scotland, UK.
We present a genome assembly from an individual male (Daubenton's bat; Chordata; Mammalia; Chiroptera; Vespertilionidae). The genome sequence is 2,127.8 megabases in span.
View Article and Find Full Text PDFBMC Zool
April 2024
Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
Most bats hunt insects on the wing at night using echolocation as their primary sensory modality, but nevertheless maintain complex eye anatomy and functional vision. This raises the question of how and when insectivorous bats use vision during their largely nocturnal lifestyle. Here, we test the hypothesis that the small insectivorous bat, Myotis daubentonii, relies less on echolocation, or dispenses with it entirely, as visual cues become available during challenging acoustic noise conditions.
View Article and Find Full Text PDFJ Exp Biol
January 2023
Department of Biology, Lund University, Biology Building, Sölvegatan 35, 223 62 Lund, Sweden.
All bats possess eyes that are of adaptive value. Echolocating bats have retinae dominated by rod photoreceptors and use dim light vision for navigation, and in rare cases for hunting. However, the visual detection threshold of insectivorous echolocating bats remains unknown.
View Article and Find Full Text PDFViruses
August 2022
Department of Virology, National Veterinary Research Institute, 24-100 Puławy, Poland.
Bats are a major global reservoir of alphacoronaviruses (alphaCoVs) and betaCoVs. Attempts to discover the causative agents of COVID-19 and SARS have revealed horseshoe bats (Rhinolophidae) to be the most probable source of the virus. We report the first detection of bat coronaviruses (BtCoVs) in insectivorous bats in Poland and highlight SARS-related coronaviruses found in Rhinolophidae bats.
View Article and Find Full Text PDFSci Rep
June 2022
Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia.
Frequent roost switching in fission-fusion societies of tree-dwelling bats is closely associated with swarming behaviour entailing ritualised night-time displays around the roost tree and/or at the roost entrance to signal its actual location, particularly immediately prior to sunrise. However, effects of demographic characteristics of individuals in this social behaviour remain unanswered. Using passive integrated transponders (PIT) and automatic readers, we recorded swarming activity of members of a Daubenton's bat (Myotis daubentonii) maternity colony in the vicinity of their roosts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!