Glycosidases of marine organisms.

Biochemistry (Mosc)

Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.

Published: July 2013

This review discusses the catalytic properties, activity regulation, structure, and functions of O-glycoside hydrolases from marine organisms exemplified by endo-1→3-β-D-glucanases of marine invertebrates.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297913070079DOI Listing

Publication Analysis

Top Keywords

marine organisms
8
glycosidases marine
4
organisms review
4
review discusses
4
discusses catalytic
4
catalytic properties
4
properties activity
4
activity regulation
4
regulation structure
4
structure functions
4

Similar Publications

Excessive total suspended matter (TSM) concentrations can exert a considerable impact on the growth of aquatic organisms in fishponds, representing a significant risk to aquaculture health. This study revised existing unified models using empirical data to develop an optimized TSM retrieval model tailored for the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) (R = 0.69, RMSE = 7.

View Article and Find Full Text PDF

In mammals, Trimethylamine N-oxide (TMAO) is involved in various physiological processes, and is considered a biomarker for multiple diseases. As a natural molecule found in marine organisms, TMAO is also an important indicator of seafood freshness. In this study, a TMAO biosensor was developed in harnessing TorRST two-component system.

View Article and Find Full Text PDF

Biosorption of heavy metals by microalgae: hazardous side effects for marine organisms.

Chemosphere

January 2025

ING PAN - Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków, Senacka 1 Str., PL31002 Kraków, Poland.

Biosorption is nowadays recommended as an ecological and environmentally friendly alternative to remove metals from contaminated regions. Even in situ incubations of algae on the seabed are conducted to investigate potential future ways of reducing metal contamination. Our study investigated the negative effects on microorganisms when metal-enriched algae are released into the marine environment.

View Article and Find Full Text PDF

Combined pollution of heavy metals and polycyclic aromatic hydrocarbons in non-ferrous metal smelting wastewater treatment plant: Distribution profiles, removal efficiency, and ecological risks to receiving river.

J Hazard Mater

January 2025

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.

Combined pollution status of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) from non-ferrous metal smelting (NFMS) industry is crucial but has not been explored. Herein, the co-distribution of HMs and PAHs in a NFMS wastewater treatment plant and the impacts on the receiving river were investigated. Cu, As, and Ni were found to be the characteristic HMs, while Acenaphthylene was the characteristic PAHs in the NFMS wastewater.

View Article and Find Full Text PDF

Microplastics (MPs) are ubiquitous in the marine environment and impact organisms at multiple levels. Understanding their actual effects on wild populations is urgently needed. This study develops a toolkit to monitor changes in gene expression induced by MPs in natural environments, focusing on filter-feeding and bioindicator species from diverse ecological and taxonomic groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!