Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been observed that certain strains of the bacterium Gluconacetobacter xylinus can produce sphere-like cellulose particles (SCP) under orbital shaking cultivation. These unique particles may have broad applications in materials science, especially in the biomedical field. The mechanism behind SCP formation and SCP biocompatibility, however, remain unknown. In this study, several factors potentially involved in the formation of SCP have been examined including the composition of initial inoculums, inoculum volume, initial media glucose concentration, and temperature. The results revealed that cellulose fibers supposedly existing in the initial inoculums did not relate to the initiation of cellulose spherical structure. Increased inoculum volume reduced the number of SCP, and different initial glucose concentrations impacted the mean of approximate diameters of SCP, while the number of SCP remained unchanged under different initial glucose concentrations. Additionally, the formation process of SCP has been clearly identified in this study by lowering the culture temperature. Furthermore, rapid attachment and extension of human osteoblast cells grown on SCP demonstrated their good biocompatibility and the potential use of this kind of materials for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bm400744a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!