The mammalian target of rapamycin (mTOR) inhibitors, a set of promising potential anti-cancer agents, has shown response variability among individuals. This study aimed to identify novel biomarkers and mechanisms that might influence the response to Rapamycin and Everolimus. Genome-wide association (GWA) analyses involving single nucleotide polymorphisms (SNPs), mRNA, and microRNAs microarray data were assessed for association with area under the cytotoxicity dose response curve (AUC) of two mTOR inhibitors in 272 human lymphoblastoid cell lines (LCLs). Integrated analysis among SNPs, expression data, microRNA data and AUC values were also performed to help select candidate genes for further functional characterization. Functional validation of candidate genes using siRNA screening in multiple cell lines followed by MTS assays for the two mTOR inhibitors were performed. We found that 16 expression probe sets (genes) that overlapped between the two drugs were associated with AUC values of two mTOR inhibitors. One hundred and twenty seven and one hundred SNPs had P < 10(-4), while 8 and 10 SNPs had P < 10(-5) with Rapamycin and Everolimus AUC, respectively. Functional studies indicated that 13 genes significantly altered cell sensitivity to either one or both drugs in at least one cell line. Additionally, one microRNA, miR-10a, was significantly associated with AUC values for both drugs and was shown to repress expression of genes that were associated with AUC and desensitize cells to both drugs. In summary, this study identified genes and a microRNA that might contribute to response to mTOR inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757297PMC
http://dx.doi.org/10.3389/fgene.2013.00166DOI Listing

Publication Analysis

Top Keywords

mtor inhibitors
20
rapamycin everolimus
12
auc values
12
associated auc
12
genome-wide association
8
lymphoblastoid cell
8
cell lines
8
candidate genes
8
auc
6
genes
6

Similar Publications

SRT3025-loaded cell membrane hybrid liposomes (3025@ML) enhanced anti-tumor activity of Oxaliplatin via inhibiting pyruvate kinase M2 and fatty acid synthase.

Lipids Health Dis

January 2025

Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, China.

Background: Bladder cancer is one of the most common malignancies of the urinary system. Despite significant advances in diagnosis and treatment, the compromised therapeutic effect of chemotherapeutic agents, such as Oxaliplatin (OXA), remains a major clinical challenge. Thus, a combination therapy is required to enhance the OXA's therapeutic effectiveness and improve patient outcomes.

View Article and Find Full Text PDF

First generation vanadium-based PTEN inhibitors: Comparative study in vitro and in vivo and identification of a novel mechanism of action.

Biochem Pharmacol

January 2025

Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece. Electronic address:

PTEN, a tumor suppressor phosphatase, regulates cellular functions by antagonizing the growth promoting PI3K/Akt/mTOR pathway through the dephosphorylation of the second messenger PIP. Many preclinical cellular and animal studies have used PTEN inhibitors to highlight specific disease contexts where acute activation of PI3K/Akt/mTOR pathway might offer therapeutic advantages. In the present study we have re-evaluated first-generation PTEN inhibitors, including established bisperoxo-vanadium complexes (bpVs).

View Article and Find Full Text PDF

Myeloid malignancies are heterogenous disorders characterized by distinct molecular drivers but share convergence of oncogenic signaling pathways and propagation by ripe pro-inflammatory niches. Here, we establish a comprehensive transcriptional atlas across the spectrum of myeloproliferative neoplasms (MPN) and secondary acute myeloid leukemia (sAML) through RNA-sequencing of 158 primary samples encompassing CD34+ hematopoietic stem/progenitor cells and CD14+ monocytes. Supported by mass cytometry (CyTOF) profiling, we reveal aberrant networks of PI3K/AKT/mTOR signalling and NFκB-mediated hyper-inflammation.

View Article and Find Full Text PDF

Background: First-generation bioresorbable scaffolds (BRS) increased risks of stent thrombosis and adverse events. The Bioheart scaffold is a new poly-L-lactic acid-based BRS.

Objectives: This study sought to evaluate the efficacy and safety of the BRS in patients with coronary artery disease.

View Article and Find Full Text PDF

Background: The risk-benefit ratio of the Absorb bioresorbable vascular scaffold (BVS) may vary before and after 3 years, the time point of complete bioresorption of the poly-L-lactic acid scaffold.

Objectives: The aim of this study was to determine the time-varying outcomes of the Absorb BVS compared with cobalt-chromium everolimus-eluting stents (EES) from a large individual-patient-data pooled analysis of randomized trials.

Methods: The individual patient data from 5 trials that randomized 5,988 patients undergoing percutaneous coronary intervention to the Absorb BVS vs EES with 5-year follow-up were pooled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!