Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT-. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT--gene conversion in the rearranged domains, and crossover exchanges in flanking domains--both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+ ×MT+ crosses, it was still suppressed in MT- ×MT- crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3757049 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1003724 | DOI Listing |
Zool Res
January 2025
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing 400715, China. E-mail:
Avian genomes exhibit compact organization and remarkable chromosomal stability. However, the extent and mechanisms by which structural variation in avian genomes differ from those in other vertebrate lineages are poorly explored. This study generated a diploid genome assembly for the golden pheasant ( ), a species distinguished by the vibrant plumage of males.
View Article and Find Full Text PDFDifferences/disorders of sex development (DSDs) are a diverse group of congenital conditions that result in disagreement between an individual's sex chromosomes, gonads, and/or anatomical sex. The 46, XY DSD group is vast and includes various conditions caused by genetic variants, hormonal imbalances, or abnormal sensitivity to testicular hormones, leading to varying degrees of under-virilization. A 19-year-old phenotypically normal female from Kakamega, Kenya, presented with primary amenorrhea.
View Article and Find Full Text PDFBMC Biol
January 2025
Institute of Rare Diseases, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610000, Sichuan, China.
Background: The advancements in second-/third-generation sequencing technologies, alongside computational innovations, have significantly enhanced our understanding of the genomic structure of Y-chromosomes and their unique phylogenetic characteristics. These researches, despite the challenges posed by the lack of population-scale genomic databases, have the potential to revolutionize our approach to high-resolution, population-specific Y-chromosome panels and databases for anthropological and forensic applications.
Objectives: This study aimed to develop the highest-resolution Y-targeted sequencing panel, utilizing time-stamped, core phylogenetic informative mutations identified from high-coverage sequences in the YanHuang cohort.
Nat Commun
January 2025
Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
J Anim Sci Biotechnol
January 2025
Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
Background: Chickens and ducks are vital sources of animal protein for humans. Recent pangenome studies suggest that a single genome is insufficient to represent the genetic information of a species, highlighting the need for more comprehensive genomes. The bird genome has more than tens of microchromosomes, but comparative genomics, annotations, and the discovery of variations are hindered by inadequate telomere-to-telomere level assemblies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!