Oculoleptomeningeal amyloidosis (OA) is a fatal and untreatable hereditary disease characterized by the accumulation of transthyretin (TTR) amyloid within the central nervous system. The mechanisms underlying the pathogenesis of OA, and in particular how amyloid triggers neuronal damage, are still unknown. Here, we show that amyloid fibrils formed by a mutant form of TTR, A25T, activate microglia, leading to the secretion of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nitric oxide. Further, we found that A25T amyloid fibrils induce the activation of Akt, culminating in the translocation of NFκB to the nucleus of microglia. While A25T fibrils were not directly toxic to neurons, the exposure of neuronal cultures to media conditioned by fibril-activated microglia caused synapse loss that culminated in extensive neuronal death via apoptosis. Finally, intracerebroventricular (i.c.v.) injection of A25T fibrils caused microgliosis, increased brain TNF-α and IL-6 levels and cognitive deficits in mice, which could be prevented by minocycline treatment. These results indicate that A25T fibrils act as pro-inflammatory agents in OA, activating microglia and causing neuronal damage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789183 | PMC |
http://dx.doi.org/10.1038/cddis.2013.325 | DOI Listing |
FEBS J
January 2021
Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Spain.
Hereditary transthyretin amyloidosis (ATTR) is a disease characterized by the extracellular deposition of transthyretin (TTR) amyloid fibrils. Highly destabilizing TTR mutations cause leptomeningeal amyloidosis, a rare, but fatal, disorder in which TTR aggregates in the brain. The disease remains intractable, since liver transplantation, the reference therapy for systemic ATTR, does not stop mutant TTR production in the brain.
View Article and Find Full Text PDFFEBS Lett
March 2016
Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Brazil.
Variant B (VB) of cystatin C has a mutation in its signal peptide (A25T), which interferes with its processing leading to reduced secretion and partial retention in the vicinity of the mitochondria. There are genetic evidences of the association of VB with Alzheimer's disease (AD) and age-related macular degeneration (AMD). Here, we investigated aggregation and amyloid propensities of unprocessed VB combining computational and in vitro studies.
View Article and Find Full Text PDFCell Death Dis
September 2013
Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil.
Oculoleptomeningeal amyloidosis (OA) is a fatal and untreatable hereditary disease characterized by the accumulation of transthyretin (TTR) amyloid within the central nervous system. The mechanisms underlying the pathogenesis of OA, and in particular how amyloid triggers neuronal damage, are still unknown. Here, we show that amyloid fibrils formed by a mutant form of TTR, A25T, activate microglia, leading to the secretion of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and nitric oxide.
View Article and Find Full Text PDFBiochemistry
December 2011
Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-590 Brazil.
Deposition of amorphous aggregates and fibrils of transthyretin (TTR) in leptomeninges and subarachnoid vessels is a characteristic of leptomeningeal amyloidosis (LA), a currently untreatable cerebral angiopathy. Herein, we report the X-ray structure of the A25T homotetramer of TTR, a natural mutant described in a patient with LA. The structure of A25T-TTR is indistinguishable from that of wild-type TTR (wt-TTR), indicating that the difference in amyloidogenicity between A25T-TTR and wt-TTR cannot be ascribed to gross structural differences.
View Article and Find Full Text PDFChem Biol Interact
September 2010
Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
Alanine-to-threonine (A to T) substitutions caused by single nucleotide polymorphisms (SNPs) occur in diverse proteins, and in certain cases these substitutions induce self-aggregation into amyloid fibrils or aggregation in other amyloidogenic proteins. This is compatible with the inverse preferences of alanine to form helices and of threonine to support beta-sheet structures, which are crucial for amyloid fibrils formation. Our interest in these mutations was initiated by studying the potential effects of the A539T substitution in the butyrylcholinesterase BChE-K variant on amyloid fibrils formation in Alzheimer's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!