AI Article Synopsis

Article Abstract

C-type lectins are a family of Ca(2+)-dependent carbohydrate-binding proteins playing crucial roles in innate immunity of vertebrates and invertebrates. In the present study, the cDNA of a C-type lectin with one carbohydrate-recognition domain (CRD) of 127 amino acids was cloned from bay scallop Argopecten irradians (designated AiCTL-3) by rapid amplification of cDNA end (RACE) techniques based on expressed sequence tag (EST) analysis. The mRNA transcripts of AiCTL-3 could be detected in all the tested tissues including hepatopancreas, gonad, adductor muscle, heart, hemocytes, mantle and gill, with the highest expression level in hepatopancreas. After the challenges with Vibrio anguillarum and Micrococcus luteus, the mRNA expression level of AiCTL-3 was obviously up-regulated and reached the maximum level at 9h (11.87fold, P<0.01, and 20.02-fold, P<0.05, respectively). The recombinant AiCTL-3 (designated as rAiCTL-3) could bind LPS, PGN, and glucan in vitro, but could not bind mannan. And it also bound Gram-positive bacteria Staphylococcus aureus as well as Gram-negative bacteria Escherichia coli and V. anguillarum. With a Ca(2+) binding site 2 EPN (Glu-Pro-Asn) motif, rAiCTL-3 could bind both mannose and galactose which was quite different from those in vertebrate. Meanwhile, it could significantly enhance the phagocytosis of scallop hemocytes in vitro. The results clearly suggested that AiCTL-3 could serve not only as a PRR participated in the immune response against various PAMPs and bacteria in non-self recognition via mannose/galactose binding specificity but an opsonin playing an important part in clearance of invaders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2013.08.042DOI Listing

Publication Analysis

Top Keywords

c-type lectin
8
bay scallop
8
scallop argopecten
8
argopecten irradians
8
expression level
8
aictl-3
4
lectin aictl-3
4
aictl-3 bay
4
irradians mannose/galactose
4
mannose/galactose binding
4

Similar Publications

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Background: The wide variability in clinical responses to anti-tumor immunotherapy drives the search for personalized strategies. One of the promising approaches is drug screening using patient-derived models composed of tumor and immune cells. In this regard, the selection of an appropriate in vitro model and the choice of cellular response assay are critical for reliable predictions.

View Article and Find Full Text PDF

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is characterized by dysregulated T cell immunity and skin microbiome dysbiosis with predominance of Staphylococcus aureus, which is associated with exacerbating AD skin inflammation. Specific glycosylation patterns of S. aureus cell wall structures amplify skin inflammation through interaction with Langerhans cells (LCs).

View Article and Find Full Text PDF

Impairment of the intestinal barrier allows the systemic translocation of commensal bacteria, inducing a proinflammatory state in the host. Here, we investigated innate immune responses following increased gut permeability upon administration of dextran sulfate sodium (DSS) in mice. We found that Enterococcus faecalis translocated to the bone marrow following DSS treatment and induced trained immunity (TI) hallmarks in bone-marrow-derived mouse macrophages and human monocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!