5-Fluorouracil (5-FU) is one of the most common chemotherapeutic agents used for the treatment of hepatocellular carcinoma (HCC). However, chemoresistance has precluded the use of 5-FU alone in clinical regimens. Combination therapies with 5-FU and other anticancer agents are considered to be a therapeutic option for patients with HCC. We previously reported that the expression of epidermal growth factor receptor variant III (EGFRvIII) can decrease the sensitivity of HCC cells to 5-FU. To overcome this problem, in this study, we elucidated the mechanism underlying EGFRvIII-mediated 5-FU resistance. We observed that EGFRvIII expression can induce miR-520d-3p downregulation and the ensuing upregulation of the transcription factor E2F-1 and the enzyme thymidylate synthase (TS), which may lead to drug resistance. Intriguingly, we found that CH12, a monoclonal antibody directed against EGFRvIII, and 5-FU together had an additive antitumor effect on EGFRvIII-positive HCC xenografts and significantly improved survival in all mice with established tumors when compared with either 5-FU or CH12 alone. Mechanistically, compared with 5-FU alone, the combination more noticeably downregulated EGFR phosphorylation and Akt phosphorylation as well as the expression of the apoptotic protector Bcl-xL and the cell cycle regulator cyclin D1. Additionally, the combination upregulated the expression of the cell cycle inhibitor p27 in in vivo treatment. More interestingly, CH12 treatment upregulated miR-520-3p and downregulated E2F-1 and TS at the mRNA and protein levels. Collectively, these observations suggest that the combination of 5-FU with mAb CH12 is a potential means of circumventing EGFRvIII-mediated 5-FU resistance in HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2013.08.038DOI Listing

Publication Analysis

Top Keywords

5-fu
10
monoclonal antibody
8
hepatocellular carcinoma
8
epidermal growth
8
growth factor
8
factor receptor
8
receptor variant
8
variant iii
8
egfrviii-mediated 5-fu
8
5-fu resistance
8

Similar Publications

Background: Colorectal cancer (CRC) ranks as the fourth most common cause of brain metastasis (BM), with its incidence on the rise. However, the molecular mechanisms driving the formation of these lesions from CRC remain unclear.

Methods: We analyzed the FoundationOne genomic database, which includes over 35,000 CRC samples from both local and metastatic sites.

View Article and Find Full Text PDF

The safety of systemic fluoropyrimidines (e.g., 5-fluorouracil, capecitabine) is impacted by germline genetic variants in DPYD, which encodes the dihydropyrimidine dehydrogenase (DPD) enzyme that functions as the rate-limiting step in the catabolism of this drug class.

View Article and Find Full Text PDF

Early-onset colorectal cancer (EOCRC) is an alarming entity worldwide. Yet, stage-specific characteristics and prognosis in localized and synchronous metastatic EOCRC are not well-defined. Two cohorts of CRC patients (localized and synchronous metastatic) were evaluated, defining EOCRC as the diagnosis <50 years old.

View Article and Find Full Text PDF

Introduction: Colorectal cancer (CRC) is characterized by an extremely high mortality rate, mainly caused by the high metastatic potential of this type of cancer. To date, chemotherapy remains the backbone of the treatment of metastatic colorectal cancer. Three main chemotherapeutic drugs used for the treatment of metastatic colorectal cancer are 5-fluorouracil, oxaliplatin and irinotecan which is metabolized to an active compound SN-38.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!