[Wiskott-Aldrich Syndrome: An updated review].

Rev Alerg Mex

Insurgentes sur 3700-C, Cuicuilco, CP 04530, MÈxico, D.F.

Published: April 2016

The Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency and is inherited in an X-linked pattern. Affected patients have mutations in the gene encoding Wiskott-Aldrich syndrome protein (WASP), a key regulator of signaling and reorganization of the cytoskeleton in hematopoietic cells. Mutations in WASP gene lead to a wide clinical spectrum ranging from thrombocytopenia, immunodeficiency, eczema and high susceptibility to tumor development and manifestations such as skin infections, suppurative otitis and pneumonia. Clinical symptoms start around the age of 6 months. Incidence of this disease is 1-10/millions of births. The laboratory tests show low platelet count and small size, but definitive diagnosis can only be confirmed by the demonstration of mutations in WASP gene. Treatment of WAS is based on antimicrobial therapy, prophylactic use of intravenous gamma globulin and bone marrow transplantation. Life expectancy in treated individuals is around 20 years but without treatment is 3.5 years.

Download full-text PDF

Source

Publication Analysis

Top Keywords

wiskott-aldrich syndrome
8
mutations wasp
8
wasp gene
8
[wiskott-aldrich syndrome
4
syndrome updated
4
updated review]
4
review] wiskott-aldrich
4
syndrome primary
4
primary immunodeficiency
4
immunodeficiency inherited
4

Similar Publications

Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization.

View Article and Find Full Text PDF

The WAVE complex in developmental and adulthood brain disorders.

Exp Mol Med

January 2025

Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.

Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization.

View Article and Find Full Text PDF

Mycolactone is a complex macrolide toxin produced by , the causative agent of Buruli ulcer. The aim of this paper is to review the chemistry, biosynthetic, and synthetic pathways of mycolactone A/B to help develop an understanding of the mode of action of these polyketides as well as their therapeutic potential. The synthetic work has largely been driven by the desire to afford researchers enough (≥100 mg) of the pure toxins for systematic biological studies toward understanding their very high biological activities.

View Article and Find Full Text PDF

Objectives: To explore the mechanism by which Wiskott-Aldrich syndrome protein family verprolin-homologous protein 1 (WAVE1) regulates lipopolysaccharide (LPS)-induced mitochondrial metabolic abnormalities and inflammatory responses in macrophages.

Methods: Macrophage cell lines with overexpressed WAVE1 (mouse BMDM and human THP1 cells) were prepared. The macrophages were treated with LPS (500 ng/mL) to simulate sepsis-induced inflammatory responses.

View Article and Find Full Text PDF

Wiskott-Aldrich syndrome (WAS) is a severe X-linked disorder caused by loss-of-function mutations in the WAS gene, responsible for encoding WASP, a key regulator of actin cytoskeleton in all hematopoietic cells except red blood cells. The mechanism underlying microthrombocytopenia, a distinctive feature of WAS and a major contributor to mortality, remains not fully elucidated. In this study, using different gene editing strategies, we corrected mutations in patient-derived WAS-induced pluripotent stem cell lines, generating isogeneic WAS iPSC lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!