Purpose: The ability to verify intrafraction tumor position is clinically useful for hypofractionated treatments. Short arc kV digital tomosynthesis (DTS) could facilitate more frequent target verification. The authors used DTS combined with triangulation to determine the mean temporal position of small-volume lung tumor targets treated with stereotactic radiotherapy. DTS registration results were benchmarked against online clinical localization using registration between free-breathing cone-beam computed tomography (CBCT) and the average intensity projection (AvIP) of the planning 4DCT.
Methods: In this retrospective study, 76 sets of kV-projection images from online CBCT scans of 13 patients were used to generate DTS image slices (CB-DTS) with nonclinical research software (DTS Toolkit, Varian Medical Systems). Three-dimensional tumor motion was 1.3-4 mm in six patients and 6.1-25.4 mm in seven patients on 4DCT (significant difference in the mean of the groups, P < 0.01). The 4DCT AvIP was used to digitally reconstruct the Reference-DTS. DTS registration and DTS registration combined with triangulation were investigated. Progressive shortening of total DTS arc lengths from 95° to 35° around 0° gantry position was evaluated for different scenarios: DTS registration using the entire arc; DTS registration plus triangulation using two nonoverlapping arcs; and for 55° and 45° total gantry rotation, DTS registration plus triangulation using two overlapping arcs. Finally, DTS registration plus triangulation performed at eight gantry angles, each separated by 45° was evaluated using full fan kV projection data for one patient with an immobile tumor and five patients with mobile tumors.
Results: For DTS registration alone, shortening arc length did not influence accuracy in X- and Y-directions, but in Z-direction, mean deviations from online CBCT localization systematically increased for shorter arc length (P < 0.05). For example, using a 95° arc mean DTS-CBCT difference was 0.8 mm (1 SD = 0.6 mm) and for a 35° arc the mean was 2.4 mm (1 SD = 1.7 mm). DTS plus triangulation using nonoverlapping-arcs increased accuracy in Z-direction for tested arc lengths ≤55° (P < 0.01). Overlapping arcs increased accuracy in Y-direction for tumors with motion >4 mm (P < 0.02) but increased Z-direction accuracy was only observed with 55° total gantry rotation. The 95th percentile deviations with this overlapping technique in X-, Y-, and Z-directions were 1.3, 2.0, and 2.5 mm, respectively. For the five patients with mobile tumors where DTS + triangulation was performed with 45° intervals, the pooled deviation from online CBCT correction showed, for X-, Y-, and Z-directions, mean of 1.1 mm, standard deviations (SD) of 0.9, 1.0, and 0.9 mm, respectively. The mean + 2 SD was <3 mm for each direction.
Conclusions: Short-arc DTS verification of time averaged lung tumor position is feasible using free-breathing kV projection data and the AvIP of the 4DCT as a reference. Observed differences between DTS and online CBCT registration with AvIP were ≤3 mm (mean + 2 SD), however, the increased temporal resolution of DTS + triangulation also identified short period deviations from the average target position on the CBCT. Short-arc DTS appears promising for intrafraction tumor position monitoring during stereotactic lung radiotherapy delivered with a rotational technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.4817245 | DOI Listing |
Med Phys
December 2024
Institute for Medical Engineering, Otto-von-Guericke University, Magdeburg, Germany.
Background: Transbronchial needle biopsy is crucial for diagnosing lung cancer, yet its efficacy depends on accurately localizing the target lesion and biopsy needle. Digital tomosynthesis (DTS) is considered a promising imaging modality for guiding bronchoscopy procedures due to its low radiation dose and small footprint relative to cone-beam computed tomography (CBCT). However, the image quality of DTS is still not sufficient for an accurate guidance, mainly due to its limited-angle acquisition.
View Article and Find Full Text PDFOpen Heart
August 2024
Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
J Am Soc Nephrol
May 2024
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Key Points: Despite new treatments for CKD, kidney failure risk remains high, particularly where albuminuria remains. We report a prespecified pooled analysis of two randomized controlled trials assessing a soluble guanylate cyclase activator for CKD. Avenciguat led to improvements in albuminuria in patients with CKD with/without type 2 diabetes mellitus, with acceptable safety.
View Article and Find Full Text PDFBiomed Eng Online
May 2024
Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
Background: Integration of a patient's non-invasive imaging data in a digital twin (DT) of the heart can provide valuable insight into the myocardial disease substrates underlying left ventricular (LV) mechanical discoordination. However, when generating a DT, model parameters should be identifiable to obtain robust parameter estimations. In this study, we used the CircAdapt model of the human heart and circulation to find a subset of parameters which were identifiable from LV cavity volume and regional strain measurements of patients with different substrates of left bundle branch block (LBBB) and myocardial infarction (MI).
View Article and Find Full Text PDFComput Biol Med
March 2024
Institute for Medical Engineering, Otto-von-Guericke University, Magdeburg, Germany; Forschungscampus STIMULATE, Otto-von-Guericke University, Magdeburg, Germany.
Traditional navigational bronchoscopy procedures rely on preprocedural computed tomography (CT) and intraoperative chest radiography and cone-beam CT (CBCT) to biopsy peripheral lung lesions. This navigational approach is challenging due to the projective nature of radiography, and the high radiation dose, long imaging time, and large footprints of CBCT. Digital tomosynthesis (DTS) is considered an attractive alternative combining the advantages of radiography and CBCT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!