Non-Markovian near-infrared Q branch of HCl diluted in liquid Ar.

J Chem Phys

Department of Fundamental and Experimental Physics, Electronics and Systems, Faculty of Physics, University of La Laguna, 38204 Tenerife, Spain.

Published: August 2013

By using a non-Markovian spectral theory based in the Kubo cumulant expansion technique, we have qualitatively studied the infrared Q branch observed in the fundamental absorption band of HCl diluted in liquid Ar. The statistical parameters of the anisotropic interaction present in this spectral theory were calculated by means of molecular dynamics techniques, and found that the values of the anisotropic correlation times are significantly greater (by a factor of two) than those previously obtained by fitting procedures or microscopic cell models. This fact is decisive for the observation in the theoretical spectral band of a central Q resonance which is absent in the abundant previous researches carried out with the usual theories based in Kubo cumulant expansion techniques. Although the theory used in this work only allows a qualitative study of the Q branch, we can employ it to study the unknown characteristics of the Q resonance which are difficult to obtain with the quantum simulation techniques recently developed. For example, in this study we have found that the Q branch is basically a non-Markovian (or memory) effect produced by the spectral line interferences, where the PR interferential profile basically determines the Q branch spectral shape. Furthermore, we have found that the Q resonance is principally generated by the first rotational states of the first two vibrational levels, those more affected by the action of the dissolvent.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4818993DOI Listing

Publication Analysis

Top Keywords

hcl diluted
8
diluted liquid
8
spectral theory
8
based kubo
8
kubo cumulant
8
cumulant expansion
8
study branch
8
branch
5
spectral
5
non-markovian near-infrared
4

Similar Publications

Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives.

RSC Adv

January 2025

Waste Recycling Technologies, Materials & Chemistry Unit, Flemish Institute for Technological Research, VITO N.V. Boeretang 200 B-2400 Mol Belgium

Antimony is a critical raw material in Europe wherein for 43% of its market share it is applied in the form of antimony trioxide as a fire retardant in plastics. Currently, antimony recycling from waste plastics does not take place and has been scarcely studied. In this work, a process was developed to extract antimony from a soft PVC material and recover it as SbClO.

View Article and Find Full Text PDF

A new and high performance polytetrafluoroethylene (PTFE) digestor was designed and fabricated in-house for the total dissolution of granite samples for the determination of technology-critical elements (TCEs) by inductively coupled plasma optical emission spectrometry (ICP-OES). Initially, the granite sample (∼0.25 g) was placed in the PTFE digestor and added 8 mL(v/v) of 20%HF+40%HCl+10%HNO acid mixture.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate measurement of metal concentrations in incineration ash is essential for assessing environmental risks and improving metal recovery methods.* -
  • Traditional digestion methods often fail to completely process solid waste ash, particularly due to issues created by using HF, which leads to new precipitates affecting metal detection.* -
  • A proposed two-step acid digestion method effectively fully digests various types of ash, utilizing microwave heating and a combination of different acids to improve accuracy in measuring heavy metals.*
View Article and Find Full Text PDF

The Comarca Lagunera is one of Mexico's most important productive areas. Its main economic activities are livestock, agriculture, and the processing industry. A wide variety of industries emit wastes that are considered highly toxic environmental pollutants, which have strong negative impacts on public health.

View Article and Find Full Text PDF

Aims: Glucosaminoglucan (β-1,4-linked glucose and glucosamine) produced by a mixotrophic sulfur-oxidizing bacterium, Thiothrix nivea, is a useful cellulose-aminating agent. Lithotrophic and mixotrophic glucosaminoglucan production were examined using fed-batch techniques.

Methods And Results: A jar fermenter was used for the fed-batch cultivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!