Side chain fluorination and anion effect on the structure of 1-butyl-3-methylimidazolium ionic liquids.

J Chem Phys

Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4+6, D-53115 Bonn, Germany.

Published: August 2013

We present a comprehensive molecular dynamics simulation study on 1-butyl-3-methylimidazolium ionic liquids and their fluorinated analogs. The work focused on the effect of fluorination at varying anions. The main findings are that the fluorination of the cations side chain increases overall structuring, especially the aggregation of cation side chain. Furthermore, large and weakly coordinating anions tend to occupy on-top positions of the cation and decrease the aggregation of cation side chains, most likely due to enhanced alkyl-anion interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4818540DOI Listing

Publication Analysis

Top Keywords

side chain
12
1-butyl-3-methylimidazolium ionic
8
ionic liquids
8
aggregation cation
8
cation side
8
side
4
chain fluorination
4
fluorination anion
4
anion structure
4
structure 1-butyl-3-methylimidazolium
4

Similar Publications

The supervision of novel psychoactive substances (NPSs) is a global problem, and the regulation of NPSs was heavily relied on identifying structural matches in established NPSs databases. However, violators could circumvent legal oversight by altering the side chain structure of recognized NPSs and the existing methods cannot overcome the inaccuracy and lag of supervision. In this study, we propose a scaffold and transformer-based NPS generation and Screening (STNGS) framework to systematically identify and evaluate potential NPSs.

View Article and Find Full Text PDF

Interactions between aromatic side chains of amino acids stabilize the fold and assembly of short peptides. The aromatic π…π and C-H…π interactions have been widely explored in the design of short peptides with specific folding and aggregation patterns. In the present study, we investigated the effect of homologated phenylalanine side chains on the conformation and assembly of peptide helices through X-ray crystallographic structure determination and analysis of five pentapeptides.

View Article and Find Full Text PDF

Impact of periodontal microRNAs associated with alveolar bone remodeling during orthodontic tooth movement: a randomized clinical trial.

J Transl Med

December 2024

Department of General Surgery and Surgical-Medical Specialties, Unit of Periodontology, School of Dentistry, University of Catania, Via S. Sofia 78, Catania, Catania, 95123, Italy.

Background: Micro-RNAs (miRNAs) have been reported to play an important role during orthodontic tooth movement (OTM) through the regulation of periodontal soft and hard tissue homeostasis and functions. The aim of the present study was to assess the effects of miRNAs on OTM and to evaluate possible predictors that influenced the overall OTM amount at a 3-month follow-up.

Methods: Through a split-mouth design, 21 healthy patients (mean age 13.

View Article and Find Full Text PDF

Intervention policies play a crucial role in promoting the green transformation of consumption patterns and reducing consumer-side carbon emissions. This topic has been extensively explored by interdisciplinary scholars. However, these studies have not substantially improved our understanding of how intervention policies effectively encourage consumers to engage in green consumption.

View Article and Find Full Text PDF

In the past decade, conjugated oligoelectrolytes (COEs) and conjugated polyelectrolytes (CPEs) have emerged at the forefront of active materials in bioanalytical and electrochemical settings due to their unique electronic and ionic properties. These materials possess π-conjugated backbones with ionic functionalities at the ends of their side chains, granting them water solubility and facilitating their processability, exploration, and applications in aqueous environments. In this perspective, the basis for evaluating their figures of merit in selected bioanalytical and electrochemical contexts will be provided and contextualized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!