IZI-06.1 is a humanized anti-TNFR1 single-chain fragment variable (scFv) that selectively inhibits binding of tumor necrosis factor (TNF) and lymphotoxin alpha to tumor necrosis factor receptor 1 (TNFR1) but not TNFR2. Recently, IZI-06.1 was converted into a fully human IgG1 antibody (ATROSAB) for the treatment of inflammatory diseases. Here, we compare the bivalent ATROSAB with a monovalent scFv-human serum albumin (HSA) fusion protein lacking any antibody-associated effector functions and possessing approximately only half the molecular mass of an IgG, which should facilitate accumulation in inflamed tissues. Furthermore, the half-life of the scFv should be strongly extended while maintaining monovalent binding, avoiding a possible signal transduction by receptor cross-linking in the absence of TNF. The scFv-HSA fusion protein was produced by stably transfected Chinese hamster ovary cells and purified by affinity chromatography. The fusion protein bound specifically to TNFR1 in enzyme-linked immunosorbent assay and TNFR1-transfected mouse embryonic fibroblasts. Affinity determined by quartz crystal microbalance was reduced compared with ATROSAB, which resulted also in a reduced inhibitory activity. Compared with the scFv fragment, the half-life of the fusion protein was significantly increased, although not reaching the long half-life of ATROSAB. In summary, the scFv-HSA may provide an alternative to the full-length IgG1 with the ability to selectively inhibit TNFR1 and exploiting the pharmacokinetic properties of albumin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/protein/gzt044 | DOI Listing |
Neurology
January 2025
The Dubowitz Neuromuscular Centre, Developmental Neurosciences Department, University College London, Great Ormond Street Institute of Child Health, United Kingdom.
Background And Objectives: Safety and efficacy of IV onasemnogene abeparvovec has been demonstrated for patients with spinal muscular atrophy (SMA) weighing <8.5 kg. SMART was the first clinical trial to evaluate onasemnogene abeparvovec for participants weighing 8.
View Article and Find Full Text PDFHead Neck Pathol
January 2025
Department of Pathology, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands.
Purpose: The NAB2::STAT6 fusion is predominantly associated with solitary fibrous tumors (SFTs) and is utilized in diagnosing SFTs through nuclear STAT6 protein overexpression. Recent studies expanded the phenotypic spectrum of NAB2::STAT6 rearranged neoplasms, including adamantinoma-like and teratocarcinosarcoma-like phenotypes. We report a case of a NAB2::STAT6 rearranged epithelial tumor exhibiting sebaceous differentiation in the parotid gland.
View Article and Find Full Text PDFSoft Matter
January 2025
Physical Chemistry, Chemistry Centre, Lund University, SE-22100 Lund, Sweden.
We have investigated the adsorption of the amyloid-forming protein α-Synuclein (αSyn) onto small unilamellar vesicles composed of a mixture of zwitterionic POPC and anionic POPS lipids. αSyn monomers adsorb onto the anionic lipid vesicles where they adopt an α-helical secondary structure. The degree of adsorption depends on the fraction of anionic lipid in the mixed lipid membrane, but one needs to consider the electrostatic shift of the serine p with increasing fraction of POPS.
View Article and Find Full Text PDFInversion of chromosome 16 [inv(16)] is one of the most common chromosomal rearrangements in Acute Myeloid Leukemia (AML) and generates the fusion gene , which initiates leukemogenesis. Patients with inv(16) at diagnosis invariably have the rearrangement at relapse, leading to the assumption that is required after leukemic transformation. However, this has yet to be shown experimentally.
View Article and Find Full Text PDFBio Protoc
January 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.
Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!