A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype. | LitMetric

Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype.

J Cell Sci

Washington University School of Medicine, Division of Bone and Mineral Disease, Departments of Internal Medicine and Cell Biology and Physiology, 660 South Euclid, Campus Box 8301, Saint Louis, MO 63110, USA.

Published: November 2013

To examine interactions between bone morphogenic protein (BMP) and canonical Wnt signaling during skeletal growth, we ablated Smad4, a key component of the TGF-β-BMP pathway, in Osx1(+) cells in mice. We show that loss of Smad4 causes stunted growth, spontaneous fractures and a combination of features seen in osteogenesis imperfecta, cleidocranial dysplasia and Wnt-deficiency syndromes. Bones of Smad4 mutant mice exhibited markers of fully differentiated osteoblasts but lacked multiple collagen-processing enzymes, including lysyl oxidase (Lox), a BMP2-responsive gene regulated by Smad4 and Runx2. Accordingly, the collagen matrix in Smad4 mutants was disorganized, but also hypomineralized. Primary osteoblasts from these mutants did not mineralize in vitro in the presence of BMP2 or Wnt3a, and Smad4 mutant mice failed to accrue new bone following systemic inhibition of the Dickkopf homolog Dkk1. Consistent with impaired biological responses to canonical Wnt, ablation of Smad4 causes cleavage of β-catenin and depletion of the low density lipoprotein receptor Lrp5, subsequent to increased caspase-3 activity and apoptosis. In summary, Smad4 regulates maturation of skeletal collagen and osteoblast survival, and is required for matrix-forming responses to both BMP2 and canonical Wnt.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820242PMC
http://dx.doi.org/10.1242/jcs.131953DOI Listing

Publication Analysis

Top Keywords

canonical wnt
16
smad4
9
wnt signaling
8
smad4 mutant
8
mutant mice
8
embryonic ablation
4
ablation osteoblast
4
osteoblast smad4
4
smad4 interrupts
4
interrupts matrix
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!