Meta-analyses showed that psychotropic drugs (antidepressants, neuroleptics, benzodiazepines, antiepileptic drugs) and some cardiac drugs (digoxin, type IA anti-arrhythmics, diuretics) are associated with increased fall risk. Because balance and gait disorders are the most consistent predictors of future falls, falls due to use of these so-called fall-risk-increasing drugs (FRIDs) might be partly caused by impairments of postural control that these drugs can induce. Therefore, the effects of FRIDs on postural control were examined by reviewing literature. Electronic databases and reference lists of identified papers were searched until June 2013. Only controlled research papers examining the effects of FRIDs on postural control were included. FRIDs were defined according to meta-analyses as antidepressants, neuroleptics, benzodiazepines, antiepileptic drugs, digoxin, type IA anti-arrhythmics, and diuretics. Ninety-four papers were included, of which study methods for quantifying postural control, and the effects of FRIDs on postural control were abstracted. Postural control was assessed with a variety of instruments, mainly evaluating aspects of body sway during quiet standing. In general, postural control was impaired, indicated by an increase in parameters quantifying body sway, when using psychotropic FRIDs. The effects were more pronounced when people were of a higher age, used psychotropics at higher daily doses, with longer half-lives, and administered for a longer period. From the present literature review, it can be concluded that psychotropic drugs cause impairments in postural control, which is probably one of the mediating factors for the increased fall risk these FRIDs are associated with. The sedative effects of these drugs on postural control are reversible, as was proven in intervention studies where FRIDs were withdrawn. The findings of the present literature review highlight the importance of using psychotropic drugs in the older population only at the lowest effective dose and for a limited period of time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s40266-013-0113-9 | DOI Listing |
Gait Posture
January 2025
Department of Industrial Engineering and Management, Yuan Ze University, 135 Yuan Tung Road, Chungli District, Taoyuan, Taiwan. Electronic address:
Background: The use of inertial measurement units (IMUs) in assessing fall risk is often limited by subject discomfort and challenges in data interpretation. Additionally, there is a scarcity of research on attitude estimation features. To address these issues, we explored novel features and representation methods in the context of sit-to-stand transitions.
View Article and Find Full Text PDFJ Dance Med Sci
January 2025
Frontier Research Institute of Convergence Sports Science, College of Educational Sciences, Yonsei University, Seoul, Korea.
Ballet-based dance training emphasizes the equal development of both legs. However, dancers often perceive differences between their legs during balance or landing. There still needs to be more consensus on the functional difference between dominant (D) and non-dominant legs (ND).
View Article and Find Full Text PDFJ Clin Med
December 2024
Pető András Faculty, Semmelweis University, 1125 Budapest, Hungary.
Cerebral palsy (CP) manifests with abnormal posture and impaired selective motor control, notably affecting trunk control and dynamic balance coordination, leading to inadequate postural control. Previous research has indicated the benefits of pulsed electromagnetic field (PEMF) therapy for various musculoskeletal and neurological conditions. Therefore, we conducted a randomized pilot study to assess the feasibility of our preliminary research design and examine the effect of the PEMF treatment among children with CP.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
Background: Semi-aquatic mammals represent a transitional phase in the evolutionary spectrum between terrestrial and aquatic mammals. The sense of balance is crucial for mammalian locomotion, and in semi-aquatic mammals, the structural foundation of this sense (the vestibular system) shows distinct morphological adaptations to both aquatic and terrestrial environments compared to their terrestrial counterparts. Despite this, the precise molecular mechanisms driving these adaptations remain elusive.
View Article and Find Full Text PDFCurr Biol
January 2025
Johns Hopkins University, Department of Biomedical Engineering, 720 Rutland Avenue, Baltimore 21205, USA. Electronic address:
The integration of different sensory streams is required to dynamically estimate how our head and body are oriented and moving relative to gravity. This process is essential to continuously maintain stable postural control, autonomic regulation, and self-motion perception. The nodulus/uvula (NU) in the posterior cerebellar vermis is known to integrate canal and otolith vestibular input to signal angular and linear head motion in relation to gravity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!