Ziyuglycoside II is one of the major active compounds of Sanguisorba officinalis L., which has a wide range of clinical applications including hemostasis, antibiosis, anti-inflammation and anti-oxidation. This study investigated the effect of ziyuglycoside II on the growth of human breast carcinoma MDA-MB-435 cells for the first time. The results showed that ziyuglycoside II could significantly inhibit the growth of MDA-MB-435 cells through blocking cell cycle progression at G0/G1 and S phase as well as via inducing cell apoptosis. Accumulation of reactive oxygen species (ROS) was observed in the progression of cell cycle arrest, which was associated with the increased expression of cell cycle regulating factors, p53 and p21. Subsequent apoptosis induced by ziyuglycoside II was accompanied with the activation of mitochondrial pathway, in particular a decreased mitochondrial membrane potential (MMP) as well as increased Bax/Bcl-2 ratio, cytochrome c release and the activity of caspase-3 and caspase-9. In conclusion, our study was the first to report that ziyuglycoside II has inhibitory effect on the growth of MDA-MB-435 cells, which might become a potential therapeutic approach of breast cancer in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794768PMC
http://dx.doi.org/10.3390/ijms140918041DOI Listing

Publication Analysis

Top Keywords

mda-mb-435 cells
16
cell cycle
16
growth human
8
human breast
8
breast carcinoma
8
carcinoma mda-mb-435
8
cycle arrest
8
growth mda-mb-435
8
ziyuglycoside
6
cell
5

Similar Publications

Introduction: Melanoma is one of the most dangerous and common types of cancer in humans. In order to minimize the toxicity and side effects of melanoma treatment, it is important to identify drug candidates that have strong anti-cancer activity and fewer side effects. Lobaric acid is a small molecule that has been found to have significant anti-cancer effects on various types of cancer cells.

View Article and Find Full Text PDF

Over 20 years have passed since siRNA was brought to the public's attention. Silencing genes with siRNA has been used for various purposes, from creating pest-resistant plants to treating human diseases. In the last six years, several siRNA therapies have been approved by the FDA, which solely target disease-inducing proteins in the liver.

View Article and Find Full Text PDF

Radioiodinated Nanobody immunoPET probe for in vivo detection of CD147 in pan-cancer.

Eur J Nucl Med Mol Imaging

November 2024

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Background: To develop the extracellular matrix metalloproteinase inducer (CD147)-targeting therapeutic strategies, accurate detection of CD147 expression in tumors is crucial. Owing to their relatively low molecular weights and high affinities, nanobodies (Nbs) may be powerful candidates for cancer diagnosis and therapy. In this study, we developed a novel CD147-targeted nanobody radiotracer, [I]I-NB147, which provides guidance for the noninvasive detection of CD147-overexpressing cancers.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating new inhibitors for survivin (BIRC5), an important protein in cancer cell regulation, as a new strategy for cancer treatment.
  • Researchers designed nine novel compounds based on previous work with MX-106, demonstrating stronger inhibitory effects on breast cancer cell growth in lab tests.
  • Advanced techniques like molecular modeling and assessment of drug-like properties (ADMET) were used to ensure these new compounds (Pred1-Pred9) are viable candidates for cancer therapy targeting survivin.
View Article and Find Full Text PDF

Twelve compounds, including four undescribed cytochalasins, xylariachalasins A-D (-), four undescribed polyketides (-), and four known cytochalasins (-), were isolated from the mangrove endophytic fungus QYF. Their structures and absolute configurations were established by extensive spectroscopic analyses (1D and 2D NMR, HRESIMS), electronic circular dichroism (ECD) calculations, C NMR calculation and DP4+ analysis, single-crystal X-ray diffraction, and the modified Mosher ester method. Compounds and are rare cytochalasin hydroperoxides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!