A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermal phase and excitonic connectivity in fluorescence induction. | LitMetric

Thermal phase and excitonic connectivity in fluorescence induction.

Photosynth Res

Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia,

Published: November 2013

Chl fluorescence induction (FI) was recorded in sunflower leaves pre-adapted to darkness or low preferentially PSI light, or inhibited by DCMU. For analysis the FI curves were plotted against the cumulative number of excitations quenched by PSII, n q, calculated as the cumulative complementary area above the FI curve. In the +DCMU leaves n q was <1 per PSII, suggesting pre-reduction of Q A during the dark pre-exposure. A strongly sigmoidal FI curve was constructed by complementing (shifting) the recorded FI curves to n q = 1 excitation per PSII. The full FI curve in +DCMU leaves was well fitted by a model assuming PSII antennae are excitonically connected in domains of four PSII. This result, obtained by gradually reducing Q A in PSII with pre-blocked Q B (by DCMU or PQH2), differs from that obtained by gradually blocking the Q B site (by increasing DCMU or PQH2 level) in leaves during (quasi)steady-state e(-) transport (Oja and Laisk, Photosynth Res 114, 15-28, 2012). Explanations are discussed. Donor side quenching was characterized by comparison of the total n q in one and the same dark-adapted leaf, which apparently increased with increasing PFD during FI. An explanation for the donor side quenching is proposed, based on electron transfer from excited P680* to oxidized tyrosine Z (TyrZ(ox)). At high PFDs the donor side quenching at the J inflection of FI is due mainly to photochemical quenching by TyrZ(ox). This quenching remains active for subsequent photons while TyrZ remains oxidized, following charge transfer to Q A. During further induction this quenching disappears as soon as PQ and Q A become reduced, charge separation becomes impossible and TyrZ is reduced by the water oxidizing complex.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-013-9915-1DOI Listing

Publication Analysis

Top Keywords

fluorescence induction
8
thermal phase
4
phase excitonic
4
excitonic connectivity
4
connectivity fluorescence
4
induction chl
4
chl fluorescence
4
induction recorded
4
recorded sunflower
4
sunflower leaves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!