Fatty alcohols play a variety of biological roles in all kingdoms of life. Fatty acyl reductase (FAR) enzymes catalyze the reduction of fatty acyl-coenzyme A (CoA) or fatty acyl-acyl carrier protein substrates to primary fatty alcohols. FAR enzymes have distinct substrate specificities with regard to chain length and degree of saturation. FAR5 (At3g44550) and FAR8 (At3g44560) from Arabidopsis thaliana are 85% identical at the amino acid level and are of equal length, but they possess distinct specificities for 18:0 or 16:0 acyl chain length, respectively. We used Saccharomyces cerevisiae as a heterologous expression system to assess FAR substrate specificity determinants. We identified individual amino acids that affect protein levels or 16:0-CoA versus 18:0-CoA specificity by expressing in yeast FAR5 and FAR8 domain-swap chimeras and site-specific mutants. We found that a threonine at position 347 and a serine at position 363 were important for high FAR5 and FAR8 protein accumulation in yeast and thus are likely important for protein folding and stability. Amino acids at positions 355 and 377 were important for dictating 16:0-CoA versus 18:0-CoA chain length specificity. Simultaneously converting alanine 355 and valine 377 of FAR5 to the corresponding FAR8 residues, leucine and methionine, respectively, almost fully converted FAR5 specificity from 18:0-CoA to 16:0-CoA. The reciprocal amino acid conversions, L355A and M377V, made in the active FAR8-S363P mutant background converted its specificity from 16:0-CoA to 18:0-CoA. This study is an important advancement in the engineering of highly active FAR proteins with desired specificities for the production of fatty alcohols with industrial value.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798499PMC
http://dx.doi.org/10.1074/jbc.M113.499715DOI Listing

Publication Analysis

Top Keywords

chain length
16
amino acids
12
far5 far8
12
fatty alcohols
12
substrate specificities
8
arabidopsis thaliana
8
amino acid
8
160-coa versus
8
versus 180-coa
8
fatty
7

Similar Publications

Background/aim: Hallux valgus (HV) is the most common deformity of the forefoot. Although HV has been strongly associated with a family history, its genetic underpinnings remain unclear. Few studies have examined the relationship between folic acid metabolism, which is critical in normal bone development, and HV.

View Article and Find Full Text PDF

Impact of DNA Ligase 1 Genotypes on Childhood Acute Lymphocytic Leukemia.

In Vivo

December 2024

Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.;

Background/aim: Genetic polymorphisms in DNA repair mechanisms can modulate overall DNA repair capacity, potentially influencing individual susceptibility to cancer. This study investigated the relationship between polymorphic variations in DNA ligase 1 and the risk of childhood acute lymphocytic leukemia (cALL).

Materials And Methods: The genotypes of DNA ligase 1 rs20579 were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis.

View Article and Find Full Text PDF

Structural insights into the biochemical mechanism of the E2/E3 hybrid enzyme UBE2O.

Structure

December 2024

Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada.

The E2/E3 hybrid enzyme UBE2O plays important roles in key biological events, but its autoubiquitination mechanism remains largely unclear. In this study, we determined the crystal structures of full-length (FL) UBE2O from Trametes pubescens (tp) and its ubiquitin-conjugating (UBC) domain. The dimeric FL-tpUBE2O structure revealed interdomain interactions between the conserved regions (CR1-CR2) and UBC.

View Article and Find Full Text PDF

Surface Doping to Suppress Iodine Ion Migration for Stable FAPbI Perovskite Quantum Dot Solar Cells.

Small

December 2024

Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China.

Formamidine lead iodide (FAPbI) quantum dots (QDs) have attracted great attention as a new generation of photovoltaic material due to their long carrier diffusion length, benign ambient stability, and light-harvesting ability. However, its large surface area with inherent thermodynamic instability and highly defective ionic termination are still major obstacles to fabricating high-performance devices. Herein, a metallic ion dopant is developed to post-treat FAPbI QDs immediately after their fabrication by using a metal-glutamate salt solution.

View Article and Find Full Text PDF

Interactions between aromatic side chains of amino acids stabilize the fold and assembly of short peptides. The aromatic π…π and C-H…π interactions have been widely explored in the design of short peptides with specific folding and aggregation patterns. In the present study, we investigated the effect of homologated phenylalanine side chains on the conformation and assembly of peptide helices through X-ray crystallographic structure determination and analysis of five pentapeptides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!