Background: Previous studies have suggested that the co-expression of two different bone morphogenetic protein (BMP) genes can result in the production of heterodimeric BMPs that may be more potent than homodimers. In this study, combined BMP-2 and BMP-7 gene transfer was performed ex vivo to compare the resulting new bone formation with that of single-BMP gene transfer in a rat spinal fusion model.
Methods: Forty-four athymic rats underwent posterolateral fusion at L4-L5 and were implanted with a collagen sponge containing human adipose-derived stem cells. Group A received untreated cells, and the remaining groups received cells transfected with various genes in a lentivirus vector. The transferred genes were GFP (green fluorescent protein) in Group B, BMP-2 in Group C, BMP-7 in Group D, and both BMP-2 and BMP-7 in Group E. In vitro production of BMP-2 and BMP-7 was quantified by means of an enzyme-linked immunosorbent assay (ELISA) specific to BMP-2 or BMP-7. Osseous fusion was quantified with use of radiography and microcomputed tomography.
Results: ELISA demonstrated that Group E, which was treated with both BMP-2 and BMP-7, produced less than one-fourth as much BMP as the groups treated with a single transfected BMP (Groups C and D). Radiographs showed that all of the spines in Groups C, D, and E appeared to be fused by eight weeks; the spines in Groups A and B showed minimal evidence of new bone formation. Measurements confirmed that the mean bone formation area was significantly greater in Groups C, D, and E compared with Groups A and B (p < 0.001). In addition, the bone formation area was significantly greater in Group E compared with Groups C and D (p < 0.001).
Conclusions: Combined BMP-2 and BMP-7 ex vivo gene transfer was found to be significantly more effective for inducing new bone formation compared with ex vivo gene transfer of an individual BMP in a rat spinal fusion model.
Clinical Relevance: Combined BMP-2 and BMP-7 therapy may lead to efficient bone regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2106/JBJS.L.01396 | DOI Listing |
PLoS One
November 2024
Department of Biophotonics in Health Sciences, University of Pernambuco, Recife, Pernambuco, Brazil.
Aim: To evaluate in vitro the effect of laser photobiomodulation (PBM) combined or not with 30-nm hydroxyapatite nanoparticles (HANp), on the osteogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) by morphometric analysis using artificial intelligence programs (TensorFlow and ArcGIS).
Methods: UC-MSCs were isolated and cultured until 80% confluence was reached. The cells were then plated according to the following experimental groups: G1 -control (DMEM), G2 -BMP-2, G3 -BMP-7, G4 -PBM (660 nm, 10 mW, 2.
Elife
October 2024
Childhood Cancer & Cell Death (C3) team, LabEx DEVweCAN, Institut Convergence Plascan, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France.
Dent Mater
August 2024
Instituto Investigación Biosanitaria, ibs. Granada, Granada, Spain; University of Granada, Faculty of Dentistry, Colegio Máximo de Cartuja s/n, Granada 18071, Spain. Electronic address:
Objective: To evaluate whether nanoparticles (NPs) functionalized with Tideglusib (TDg, NP-12), and deposited on titanium surfaces, would counteract the effect of bacterial lipopolysaccharide (LPS) on osteoblasts.
Methods: Experimental groups were: (a) Titanium discs (TiD), (b) TiD covered with undoped NPs (Un-NPs) and (c) TiD covered with TDg-doped NPs (TDg-NPs). Human primary osteoblasts were cultured onto these discs, in the presence or absence of bacterial LPS.
Orthop Traumatol Surg Res
October 2024
Faculty of Medicine, Université de Montréal, 2900 boulevard Edouard-Montpetit, Montreal, QC. H3T 1J4, Canada; Department of orthopedic surgery, CIUSSS du Nord-de-l'île-de-Montréal, Hôpital du Sacré-Cœur de Montréal, C2095-5400 Boul. Gouin O., Montreal, QC. H4J 1C5, Canada. Electronic address:
Introduction: Recent studies have shown a growing concern regarding the cost-effectiveness and the lack of supporting data for the biologic agents that are being increasingly used in the orthopedic field. Our aim was to conduct a systematic scoping review of recent publications (last five years) on the use of orthobiologics to treat fracture non-union and summarize the latest available data.
Patients And Methods: The inclusion criteria for this review were articles published in English, from 2016 to 2022, and focusing on the use of orthobiologics for the surgical treatment of non-union.
J Dent Sci
April 2024
Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain.
Background/purpose: Amoxicillin and clindamycin are the most effective decontaminants for intraoral bone grafts before their application in bone regeneration without cytotoxic effects on osteoblasts, but their effects on the gene expression of markers involved in osteoblast growth and differentiation remain unclear. The study objective was to determine the effects of amoxicillin and clindamycin on the gene expression of markers involved in osteoblast growth and differentiation.
Materials And Methods: Real-time polymerase chain reaction (RT-PCR) was performed to explore the effect of 150 μg/mL clindamycin or 400 μg/mL amoxicillin on the gene expression by primary human osteoblasts (HOBs) of runt-related transcription factor 2 (Runx-2), osterix (OSX), alkaline phosphatase (ALP), osteocalcin (OSC), osteoprotegerin (OPG), receptor activator for nuclear factor κ B ligand (RANKL), type I collagen (Col-I), bone morphogenetic proteins 2 and 7 (BMP-2 and BMP-7), TGF-β1 and TGF-β receptors (TGF-βR1, TGF-βR2, and TGF-βR3), and vascular endothelial growth factor (VEGF).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!