Mutations in connexin50 (Cx50) cause dominant cataracts in both humans and mice. The exact mechanisms by which mutations cause these variable phenotypes are poorly understood. We have examined the functional properties of gap junctions made by three Cx50 mutations, V44E, D47N, and V79L, expressed in mammalian cell lines. V44E trafficked to the plasma membrane properly and formed gap junctional plaques. However, the mutant did not form functional gap junctions when expressed alone, or with wild-type (WT) Cx46 and Cx50, indicating that V44E is a dominant negative inhibitor of WT connexin function. In contrast, D47N subunits did not localize to junctional plaques or form functional homotypic gap junctions; however, mixed expression of D47N and WT subunits of either Cx50 or Cx46 resulted in functional intercellular channels, with high levels of coupling. Single-channel studies indicated that D47N formed heteromeric channels with WT Cx46 with unique properties. Unlike either V44E or D47N, V79L formed functional homotypic intercellular channels. However, the mutation caused an alteration in voltage gating and a dramatic reduction in the single-channel open probability, resulting in much lower levels of conductance in cells expressing V79L alone, or together with WT connexin subunits. Thus, each mutation produced distinct changes in the properties of junctional coupling. V44E failed to form intercellular channels in any configuration, D47N formed only heteromeric channels with WT connexins, and V79L formed homotypic and heteromeric channels with altered properties. These results suggest that unique interactions between mutant and wild-type lens connexins might underlie the development of various cataract phenotypes in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920000 | PMC |
http://dx.doi.org/10.1152/ajpcell.00098.2013 | DOI Listing |
Phys Rev Lett
December 2024
Google Quantum AI, Santa Barbara, California 93117, USA.
Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelated in time and space. In superconducting qubit arrays, high-energy impact events can produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Multiterminal Josephson junctions (MTJJs), devices in which a normal metal is in contact with three or more superconducting leads, have been proposed as artificial analogs of topological crystals. The topological nature of MTJJs manifests as a modulation of the quasiparticle density of states (DOS) in the normal metal that may be probed by tunneling measurements. We show that one can reveal this modulation by measuring the resistance of diffusive MTJJs with normal contacts, which shows rich structure as a function of the phase differences {ϕ_{i}}.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, University of Manchester, Manchester, UK.
Unconventional superconductivity, where electron pairing does not involve electron-phonon interactions, is often attributed to magnetic correlations in a material. Well known examples include high-T cuprates and uranium-based heavy fermion superconductors. Less explored are unconventional superconductors with strong spin-orbit coupling, where interactions between spin-polarised electrons and external magnetic field can result in multiple superconducting phases and field-induced transitions between them, a rare phenomenon in the superconducting state.
View Article and Find Full Text PDFPLoS One
December 2024
Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland.
Gap junction intercellular communication (GJIC) between two adjacent cells involves direct exchange of cytosolic ions and small molecules via connexin gap junction channels (GJCs). Connexin GJCs have emerged as drug targets, with small molecule connexin inhibitors considered a viable therapeutic strategy in several diseases. The molecular mechanisms of GJC inhibition by known small molecule connexin inhibitors remain unknown, preventing the development of more potent and connexin-specific therapeutics.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
While membrane proteins such as ion channels continuously turn over and require replacement, the mechanisms of specificity of efficient channel delivery to appropriate membrane subdomains remain poorly understood. GJA1-20k is a truncated Connexin43 (Cx43) isoform arising from translation initiating at an internal start codon within the same parent GJA1 mRNA and is requisite for full-length Cx43 trafficking to cell borders. GJA1-20k does not have a full transmembrane domain, and it is not known how GJA1-20k enables forward delivery of Cx43 hemichannels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!