Effects of biomass types (bark mulch versus sugar beet pulp) and carbonization processing conditions (temperature, residence time, and phase of reaction medium) on the chemical characteristics of hydrochars were examined by elemental analysis, solid-state ¹³C NMR, and chemical and biochemical oxygen demand measurements. Bark hydrochars were more aromatic than sugar beet hydrochars produced under the same processing conditions. The presence of lignin in bark led to a much lower biochemical oxygen demand (BOD) of bark than sugar beet and increasing trends of BOD after carbonization. Compared with those prepared at 200 °C, 250 °C hydrochars were more aromatic and depleted of carbohydrates. Longer residence time (20 versus 3 h) at 250 °C resulted in the enrichment of nonprotonated aromatic carbons. Both bark and sugar beet pulp underwent deeper carbonization during water hydrothermal carbonization than during steam hydrothermal carbonization (200 °C, 3 h) in terms of more abundant aromatic C but less carbohydrate C in water hydrochars.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf402345kDOI Listing

Publication Analysis

Top Keywords

sugar beet
16
effects biomass
8
biomass types
8
chemical characteristics
8
characteristics hydrochars
8
beet pulp
8
processing conditions
8
residence time
8
biochemical oxygen
8
oxygen demand
8

Similar Publications

This study investigates the impact of maternal gestation diets with varying fiber contents on gene expression and chromatin accessibility in fetuses and piglets fed a low fiber diet post weaning. High-fiber maternal diets, enriched with sugar beet pulp or pea internal fiber, were compared to a low-fiber maternal diet to evaluate their effects on liver and muscle tissues. The findings demonstrate that maternal high-fiber diets significantly alter chromatin accessibility, predicted transcription factor activity and transcriptional landscape in both fetuses and piglets.

View Article and Find Full Text PDF

Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.

Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics.

View Article and Find Full Text PDF

Incidence, Distribution, and Pathogenicity of Fungi Growing on Sugar Beet Roots on Top of Outdoor Piles in Idaho.

Plant Dis

January 2025

USDA ARS, Northwest Irrigation and Soils Research Laboratory, 3793 North 3600 East, Kimberly, Idaho, United States, 83341;

Sugar beet roots in Idaho are held under ambient conditions in outdoor storage piles which can lead to fungal growth and rot and substantial sucrose loss. Thus the incidence, distribution, and pathogenicity of fungi associated with fungal growth on the surface of sugar beet roots on top of outdoor piles was investigated. The surface fungal growth on sugar beet roots held on top of 14 Idaho outdoor piles [tarped ventilated (TV) piles and piles with no tarps or ventilation (NTV) at 7 locations] was assessed in 2018-19 and 2019-20.

View Article and Find Full Text PDF

This study addresses the growing interest in nutritional supplements that improve athletic performance in endurance sports. Previous research suggests that nitrates in beetroot juice enhance blood vessel dilation and oxygen delivery to muscles. However, the effects of these nitrates on cardiopulmonary performance in female athletes remain underexplored.

View Article and Find Full Text PDF

This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!