Nanoparticles were prepared by ionotropic gelation of low-methoxylated (LM) and amidated low-methoxylated (AM) pectin with zinc chloride (ZnCl2) in aqueous media. The samples were characterized by atomic force microscopy, dynamic light scattering, turbidimetry, zeta potential, and pH measurements. Pectin nanoparticles could be prepared at a pectin concentration of 0.07% (w/w) and a ZnCl2-to-pectin ratio of 15:85 (w/w) in the presence of sodium chloride, but not in pure water. Interestingly, particles in the nanometer size-range could also be prepared in the absence of the cross-linker ZnCl2. The dynamic light scattering studies revealed that the AM-pectin nanoparticles were much less polydisperse than the LM-pectin nanoparticles. The AM-pectin nanoparticles were therefore considered to be more promising as a potential drug delivery system, and further studies were performed to investigate the colloidal stability and the effect of the pectin concentration on the size, charge, and compactness of these nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm4008474DOI Listing

Publication Analysis

Top Keywords

pectin nanoparticles
8
nanoparticles prepared
8
dynamic light
8
light scattering
8
pectin concentration
8
am-pectin nanoparticles
8
nanoparticles
7
pectin
5
preparation ionically
4
ionically cross-linked
4

Similar Publications

This study evaluated the properties of lentil protein, pea protein, quinoa protein, and soy protein as natural nanoparticle stabilizers and their interactions with pectin and chitin nanofiber in preparing high internal phase Pickering emulsions (HIPPEs). The globular plant proteins interact with polysaccharides through hydrogen bonding and electrostatic interactions, transforming the structure into complex morphologies, including fibrous and elliptical shapes. These complex nanoparticles exhibited enhanced thermal decomposition stability, and the HIPPEs constructed by them demonstrated significantly improved apparent viscosity and elastic modulus, with a yield stress of 931.

View Article and Find Full Text PDF

Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.

View Article and Find Full Text PDF

Natural biopolymer-based liquid mulching films (LMF) have received widespread attention, whereas the fragile structure and limited functionality have severely restricted their application. Herein, polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films (P-MMT@PDA LMF) were prepared. Dopamine has abundant active sites, and its self-polymerization onto the surface of MMT improves the compatibility of MMT with pectin chains, facilitates the homogeneous dispersion of MMT@PDA in pectin polymers, and makes them more tightly entangled through hydrogen bonding.

View Article and Find Full Text PDF

Oral glucose-responsive nanoparticles loaded with artemisinin induce pancreatic β-cell regeneration for the treatment of type 2 diabetes.

J Colloid Interface Sci

January 2025

School of Life Science, South China Normal University, Guangzhou 510631 China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China. Electronic address:

Type 2 diabetes (T2D) is a chronic disease characterized by long-term insulin resistance (IR) and pancreatic β-cell dysfunction. Conventional T2D medication ignores pancreatic β-cell damage. In this study, we designed an oral glucose-responsive nanoparticle for pancreatic β-cell regeneration and treatment of T2D.

View Article and Find Full Text PDF

Tea polyphenol-loaded chitosan/pectin nanoparticle as a nucleating agent for slurry ice production and its application in preservation of large yellow croaker (Pseudosciaena crocea).

Int J Biol Macromol

January 2025

College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Key Laboratory of Green, Low-carbon and Efficient Development of Marine Fishery Resources, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou 310014, China. Electronic address:

Slurry ice preparation experiences considerable supercooling, which can be mitigated by nano-nucleating agents. A nano-nucleating agent (CH/PE-TP NPs) was prepared by ultrasonication-assistant self-assembly of chitosan (CH) and pectin (PE), encapsulated with tea polyphenols (TP). Ultrasonication for 10 min downsized self-assembled aggregates from 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!