Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Classical calibration and inverse calibration are two kinds of multivariate calibration in chemical modeling. They use strategies of modeling in component spectral space and in measured variable space, respectively. However, the intrinsic difference between these two calibration models is not fully investigated. Besides, in the case of complex analytical systems, the net analyte signal (NAS) cannot be well defined in inverse calibration due to the existence of uninformative and/or interfering variables. Therefore, application of the NAS cannot improve the predictive performance for this kind of calibration, since it is essentially a technique based on the full-spectrum. From our perspective, variable selection can significantly improve the predictive performance through removing uninformative and/or interfering variables. Although the need for variable selection in the inverse calibration model has already been experimentally demonstrated, it has not aroused so much attention. In this study, we first clarify the intrinsic difference between these two calibration models and then use a new perspective to intrinsically prove the importance of variable selection in the inverse calibration model for complex analytical systems. In addition, we have experimentally validated our viewpoint through the use of one UV dataset and two generated near infrared (NIR) datasets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3an00714f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!