Unlabelled: Many polarly flagellated bacteria require similar two-component regulatory systems (TCSs) and σ(54) to activate transcription of genes essential for flagellar motility. Herein, we discovered that in addition to the flagellar type III secretion system (T3SS), the Campylobacter jejuni flagellar MS ring and rotor are required to activate the FlgSR TCS. Mutants lacking the FliF MS ring and FliG C ring rotor proteins were as defective as T3SS mutants in FlgSR- and σ(54)-dependent flagellar gene expression. Also, FliF and FliG required each other for stability, which is mediated by atypical extensions to the proteins. A FliF mutant that presumably does not interact with the T3SS protein FlhA did not support flagellar gene transcription, suggesting that FliF-T3SS interactions are essential to generate a signal sensed by the cytoplasmic FlgS histidine kinase. Furthermore, the flagellar T3SS was required for FlgS to immunoprecipitate with FliF and FliG. We propose a model whereby the flagellar T3SS facilitates FliF and FliG multimerization into the MS ring and rotor. As a result, these flagellar structures form a cytoplasmic complex that interacts with and is sensed by FlgS. The synthesis of these structures appears to be a regulatory checkpoint in flagellar biogenesis that the FlgS kinase monitors to initiate signal transduction that activates σ(54) and expression of genes required for the next stage of flagellation. Given that other polar flagellates have flagellar transcriptional hierarchies that are organized similarly as in C. jejuni, this regulatory checkpoint may exist in a broad range of bacteria to influence similar TCSs and flagellar gene transcription.
Importance: Despite the presence of numerous two-component regulatory systems (TCSs) in bacteria, direct signals sensed by TCSs to activate signal transduction are known for only a minority. Polar flagellates, including Pseudomonas, Vibrio, Helicobacter, and Campylobacter species, require a similar TCS and σ(54) for flagellar gene transcription, but the activating signals for these TCSs are unknown. We explored signals that activate the Campylobacter jejuni FlgSR TCS to initiate σ(54)-dependent flagellar gene transcription. Our discoveries suggest that the FlgS histidine kinase monitors the formation of the flagellar type III secretion system and the surrounding MS and C rings. The synthesis of these structures creates a regulatory checkpoint in flagellar biogenesis that is sensed by FlgS to ensure proper transcription of the next set of genes for subsequent steps in flagellation. Given the conservation of flagellar-associated TCSs and transcriptional cascades in polar flagellates, this regulatory checkpoint in flagellar biogenesis likely impacts flagellation in a broad range of bacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760246 | PMC |
http://dx.doi.org/10.1128/mBio.00432-13 | DOI Listing |
Discov Med
December 2024
Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 330006 Nanchang, Jiangxi, China.
Background: Atherosclerosis, a chronic inflammatory condition characterized by the accumulation of lipid and fibrous elements in the arterial wall, is a major contributor to cardiovascular disease. This study aimed to investigate the regulation of apoptosis and cellular aging in human umbilical vein endothelial cells by Thousand and One Amino Acid Kinase 1 (TAOK1) via Cell division cycle 20 () in the context of atherosclerosis.
Methods: The study evaluated the impact of TAOK1 on Oxidized low-density lipoprotein (ox-LDL)-induced changes in cell viability, angiogenesis, cell senescence, apoptosis, cell cycle arrest, and related signaling pathways in human umbilical vein endothelial cells (HUVECs) using Cell Counting Kit-8, β-galactosidase staining, flow cytometry, and western blot.
J Thorac Oncol
December 2024
Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
Introduction: Copy-number (CN) loss of chromosome 9p, or parts thereof, impair immune response and confer ICT resistance by direct elimination of immune-regulatory genes on this arm, notably IFNγ genes at 9p24.1, and type-I interferon (IFN-I) genes at 9p21.3.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Occupational Health and Occupational Disease, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China. Electronic address:
Silicosis is a severe interstitial lung disease resulting from prolonged exposure to silica dust in working environment, characterized by inflammation and fibrosis. This condition is closely associated with immune dysregulation, although the precise regulatory mechanisms remain elusive. Immune checkpoints (ICs) comprise receptor-ligand pairs crucial for immune cell activation and coordination of immune responses.
View Article and Find Full Text PDFGastric Cancer
December 2024
Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
Background: Gastric cancer (GC) shows limited response to immune checkpoint inhibitors due to its complex tumor immune microenvironment (TIME). This study explores the functions of various immune cells in the complex TIME in GC.
Methods: We assessed CD8 + T-cell infiltration of GC tissues by immunohistochemistry, and performed single-cell RNA sequencing (scRNA-seq) of tumor and normal tissues from 34 patients with GC.
J Immunother Cancer
December 2024
Department of Respiratory and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, China
Background: Although tumor necrosis factor receptor 2 (TNFR2) has been recognized as an attractive next-generation candidate target for cancer immunotherapy, the factors that regulate the gene expression and their mechanistic effects on tumor-infiltrating regulatory T cells (Treg cells) remain poorly understood.
Methods: Single-cell RNA sequencing analysis was employed to analyze the phenotypic and functional differences between TNFR2 Treg cells and TNFR2 Treg cells. Malignant pleural effusion (MPE) from humans and mouse was used to investigate the potential mechanisms by which lactate regulates TNFR2 expression.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!