The disposal of hexachlorocyclohexane (HCH) muck has created large number of HCH dumpsites all over the world from where the harmful HCH isomers are leaking into the environment. Bacteria have evolved at such contaminated sites that have the ability to degrade HCH. Degradation of various HCH isomers in bacterial strains is mediated primarily by two genes: linA and linB which encode dehydrochlorinase and haloalkane dehalogenase respectively. In this study we explored one such highly contaminated HCH dumpsite located in Lucknow, Uttar Pradesh, India. To assess the biostimulation potential of the contaminated site, microbial diversity study and real-time PCR based quantification of lin genes was carried out. The soil samples from dumpsite and surrounding areas were found to be highly contaminated with HCH residue levels as high as 1.8 × 10(5) mg kg(-1). The residues were detected in areas upto 13 km from the dumpsite. Sphingomonads, Chromohalobacter, and Marinobacter were the dominant genera present at the dump-site. Role of Sphingomonads in HCH degradation has been well documented. The highest copy numbers of linA and linB genes as determined using real-time PCR were 6.2 × 10(4) and 5.3 × 10(5), respectively, were found in sample from the dump site. The presence of Sphingomonads, linA, and linB genes from HCH contaminated soil indicates the presence of indigenous bacterial communities capable of HCH degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jobm.201300211 | DOI Listing |
Fungal Biol Biotechnol
September 2023
Faculty of Biological Sciences, Pharmaceutical Microbiology, Friedrich Schiller University Jena, Winzerlaer Strasse 2, 07745, Jena, Germany.
Background: Fungi are prolific producers of bioactive small molecules of pharmaceutical or agricultural interest. The secondary metabolism of higher fungi (Dikarya) has been well-investigated which led to > 39,000 described compounds. However, natural product researchers scarcely drew attention to early-diverging fungi (Mucoro- and Zoopagomycota) as they are considered to rarely produce secondary metabolites.
View Article and Find Full Text PDFBioresour Technol
November 2023
Environmental Technologies Division, CSIR-National Botanical Research Institute, Lucknow, India. Electronic address:
Lindane, an organochlorine pesticide, negatively affects living beings and the ecosystem. In this study, the potential of 9 Ascomycetes fungi, isolated from an hexachlorocyclohexane dumpsite soil, was tested for biodegradation of lindane. The strain Pleurostoma richardsiae (FN5) showed lindane biodegradation rate constant (K value) of 0.
View Article and Find Full Text PDFMicrobiologyopen
June 2023
Departamento de Bioquímica y Biología Molecular y Celular and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain.
Lindane (γ-HCH) is an organochlorine pesticide that causes huge environmental concerns worldwide due to its recalcitrance and toxicity. The use of the cyanobacterium Anabaena sp. PCC 7120 in aquatic lindane bioremediation has been suggested but information relative to this process is scarce.
View Article and Find Full Text PDFJ Hazard Mater
July 2022
Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Avda. de Vigo s/n, Santiago de Compostela 15705, Spain. Electronic address:
Lindane and other 1,2,3,4,5,6-hexachlorocyclohexane (HCH) isomers are persistent organic pollutants highly hydrophobic, which hampers their availability and biodegradation. This work aimed at (i) investigating genes encoding enzymes involved in HCH degradation in the bacterium Sphingobium sp. D4, (ii) selecting strains, from a collection of environmental isolates, able to mobilize HCHs from contaminated soil, and (iii) analysing the biodegradation of HCHs by strain D4 in co-culture with HCH-mobilizing strains or when cultivated with root exudates.
View Article and Find Full Text PDFEcotoxicol Environ Saf
April 2022
National Institute for Marine Research and Development "Grigore Antipa", Blvd. Mamaia no. 300, RO-900581 Constanţa 3, Romania. Electronic address:
The ability of bacteria to degrade organic pollutants influences their fate in the environment, impact on the other biota and accumulation in the food web. The aim of this study was to evaluate abundance and expression activity of the catabolic genes targeting widespread pollutants, such as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachloro-cyclohexane (HCH) in the Black Sea water column and sediments. Concentrations of PAHs, PCBs and HCH were determined by gas chromatography (GC) coupled to mass spectrometry (MS) and electron capture (ECD) detectors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!