We report a new type of fluorescent organic nanoparticles (16-EDFONP) which are composed of ten bis(3,4,5-tris(16-alkyloxy) monobenzoylglyceride) bisphenol A molecules. The nanoparticles are only found in high concentration solution and exhibit the excitation-dependent fluorescence (EDF). The 16-EDFONP shows clear spectral relaxation on the nanosecond time scale. We have observed similar spectral shifts in cyclohexane, and thus attribute the time-dependent Stokes shift to the emission from multiple conformations of 16-EDFONP. With the employment of steady state and time-resolved fluorescence anisotropy measurements, the hydrodynamic radius of 16-EDFONP is estimated to be 3.13 nm, which is consistent with the size measured using the dynamic light scattering and high-resolution transmission electron microscopy techniques. The time-resolved anisotropy reveals the change in fundamental anisotropy upon different excitation wavelengths, arising from the structural heterogeneity of hydrogen-bonded monoacylglycerol clusters of the 16-EDFONP. Our findings indicate that incomplete spectral relaxation and the size distribution of nanoparticles are not the source of the observed EDF. The EDF comes from the selective excitation of the 16-EDFONP with different monoacylglycerol hydrogen-bond conformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp52137k | DOI Listing |
Adv Healthc Mater
January 2025
Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China.
The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University - Handan Campus: Fudan University, Department of Chemistry, 2205 Songhu Road, Laboratory of Advanced Materials, 200438, Shanghai, CHINA.
The synthesis of metal-organic frameworks (MOFs) with diverse geometries has captivated considerable interest due to their manifestation of novel and extraordinary properties. While much progress has been made in shaping regular polyhedral single-crystal MOFs, the creation of more complex, topologically intricate nanostructures remains a largely unexplored frontier. Here, we present a refined site-specific anisotropic assembly and etching co-mediation approach to fabricate a series of hierarchical MOF nanohybrids and single-crystal MOFs.
View Article and Find Full Text PDFJ Pharm Anal
December 2024
Department of Radiation Oncology, Anhui No. 2 Provincial People's Hospital, Hefei, 230031, China.
Radiotherapy (RT) is one of the most common treatments for cancer. However, intracellular glutathione (GSH) plays a key role in protecting cancer from radiation damage. Herein, we have developed a platelet membrane biomimetic nanomedicine (PMD) that induces double GSH consumption to enhance tumor radioimmunotherapy.
View Article and Find Full Text PDFMater Today Bio
February 2025
Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
Fibroblast activating protein (FAP) is up-regulated in cancer-associated fibroblasts (CAFs) of more than 90 % of tumor microenvironment and also highly expressed on the surface of multiple tumor cells like glioblastoma, which can be used as a specific target for tumor diagnosis and treatment. At present, small-molecule radiotracer targeting FAP with high specificity exhibit limited functionality, which hinders the integration of theranostics as well as multifunctionality. In this work, we have engineered a multifunctional nanoplatform utilizing organic melanin nanoparticles that specifically targets FAP, facilitating both multimodal imaging and synergistic therapeutic applications.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China.
The hydrogenation of bicarbonate, a byproduct of CO captured in alkaline solutions, into formic acid (FA) using glycerol (GLY) as a hydrogen source offers a promising carbon-negative strategy for reducing CO emissions. While Pd-based catalysts are effective in this reaction, they often require high temperatures, leading to low FA yield due to strong hydrogen adsorption on Pd surfaces. In this work, metal-organic framework derived N-doped carbon encapsulated CoNi alloy nanoparticles (CoNi@NC) were prepared, acid-leached, and employed as a support to modulate the electronic structure of Pd-based catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!