Rilpivirine inhibits drug transporters ABCB1, SLC22A1, and SLC22A2 in vitro.

Antimicrob Agents Chemother

Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom.

Published: November 2013

Rilpivirine is a nonnucleoside reverse transcriptase inhibitor approved for treatment of HIV-1 infection in antiretroviral-naive adult patients. Potential interactions with drug transporters have not been fully investigated. Transport by and inhibition of drug transporters by rilpivirine were analyzed to further understand the mechanisms governing rilpivirine exposure and determine the potential for transporter-mediated drug-drug interactions. The ability of rilpivirine to inhibit or be transported by ABCB1 was determined using ABCB1-overexpressing CEMVBL100 cells and Caco-2 cell monolayers. The Xenopus laevis oocyte heterologous protein expression system was used to clarify if rilpivirine was either transported by or inhibited the function of influx transporters SLCO1A2, SLCO1B1, SLCO1B3, SLC22A2, SLC22A6, and SLC22A8. The ability of rilpivirine to inhibit or be transported by SLC22A1 was determined using SLC22A1-expressing KCL22 cells. Rilpivirine showed higher accumulation in SLC22A1-overexpressing KCL22 cells than control cells (27% increase, P = 0.03) and inhibited the functionality of SLC22A1 and SLC22A2 transport with 50% inhibitory concentrations (IC50s) of 28.5 μM and 5.13 μM, respectively. Inhibition of ABCB1-mediated digoxin transport was determined for rilpivirine, which inhibited digoxin transport in the B-to-A direction with an IC50 of 4.48 μM. The maximum rilpivirine concentration in plasma in patients following a standard 25-mg dosing regimen is around 0.43 μM, lower than that necessary to substantially inhibit ABCB1, SLC22A1, or SLC22A2 in vitro. However, these data indicate that SLC22A1 may contribute to variability in rilpivirine exposure and that interactions of rilpivirine with substrates of SLC22A1, SLC22A2, or ABCB1 may be possible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811300PMC
http://dx.doi.org/10.1128/AAC.01421-13DOI Listing

Publication Analysis

Top Keywords

slc22a1 slc22a2
16
rilpivirine
12
drug transporters
12
abcb1 slc22a1
8
slc22a2 vitro
8
rilpivirine exposure
8
ability rilpivirine
8
rilpivirine inhibit
8
inhibit transported
8
kcl22 cells
8

Similar Publications

In Mexico, 75% of diabetes mellitus type 2 (DMT2) patients are not in glycaemic control criteria (HbA1c<7%); this entails a significantly variable drug response. Amongst the factors influencing such variability, are genetics, more specifically, single nucleotide polymorphisms (SNPs). Three genes implied in metformin pharmacokinetics are , , and , which are polymorphic.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a major global health problem. Response to first-line therapy is variable. This is partially due to interindividual variability across those genes codifying transport, metabolising, and drug activation proteins involved in first-line pharmacological treatment.

View Article and Find Full Text PDF

Background: Variants in organic cation transporter (OCT) genes play a crucial role in metformin pharmacokinetics and are critical for diabetes treatment. However, studies investigating the effect of OCT genetic polymorphisms on metformin response have reported inconsistent results. This review and meta-analysis aimed to evaluate the associations between OCT genetic polymorphisms and metformin response and intolerance in individuals with type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

Cisplatin (CDDP) is an efficient chemotherapeutic agent broadly used to treat solid cancers. Chemotherapy with CDDP can cause significant unwanted side effects such as renal toxicity and peripheral neurotoxicity. CDDP is a substrate of organic cation transporters (OCT), transporters that are highly expressed in renal tissue.

View Article and Find Full Text PDF

A wide range of endogenous and xenobiotic organic ions require facilitated transport systems to cross the plasma membrane for their disposition. In mammals, organic cation transporter (OCT) subtypes 1 and 2 (OCT1 and OCT2, also known as SLC22A1 and SLC22A2, respectively) are polyspecific transporters responsible for the uptake and clearance of structurally diverse cationic compounds in the liver and kidneys, respectively. Notably, it is well established that human OCT1 and OCT2 play central roles in the pharmacokinetics and drug-drug interactions of many prescription medications, including metformin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!