Theories have been put forward on the etiology of sialoliths; however, a comprehensive understanding of their growth mechanisms is lacking. In an attempt to fill this gap, the current study has evaluated the internal architecture and growth patterns of a set of 30 independent specimens of sialoliths characterized at different scales by computed microtomography and electron microscopy. Tomography reconstructions showed cores in most of the sialoliths. The cores were surrounded by concentric or irregular patterns with variable degrees of mineralization. Regardless of the patterns, at finer scales the sialoliths consisted of banded and globular structures. The distribution of precipitates in the banded structures is compatible with a Liesegang-Ostwald phenomenon. On the other hand, the globular structures appear to arise from surface tension effects and to develop self-similar features as a result of a viscous fingering process. Electron diffraction patterns demonstrated that Ca- and P-based electrolytes crystallize in a structure close to that of hydroxyapatite. The organic matter contained sulfur with apparent origin from sulfated components of secretory material. These results cast new light on the mechanisms involved in the formation of sialoliths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1431927613001694 | DOI Listing |
PLoS One
January 2025
Human Anatomy Teaching and Research Section (Digital Medical Center), Inner Mongolia Medical University Basic Medical College, Hohhot, China.
The cervical uncinate process is a unique structure of the cervical spine that undergoes significant changes in its morphological characteristics with age, and these changes may be related to osteoporosis. This study aimed to observe the distribution of cancellous bone in the cervical uncinate process and its morphological features using micro-computed tomography (Micro-CT) to gain a deeper understanding of the morphological characteristics of the uncinate microstructure. We performed Micro-CT scans on 31 sets of C3-C7 vertebrae, a total of 155 intact bone samples, and subsequently used the measurement software with the Micro-CT system to obtain parameters related to the cancellous bone of the uncinate process.
View Article and Find Full Text PDFSci Adv
January 2025
Institute for Biomechanics, ETH Zürich, Zürich, Switzerland.
In recent decades, the field of bone mechanobiology has sought experimental techniques to unravel the molecular mechanisms governing the phenomenon of mechanically regulated fracture healing. Each cell within a fracture site resides within different local microenvironments characterized by different levels of mechanical strain; thus, preserving the spatial location of each cell is critical in relating cellular responses to mechanical stimuli. Our spatial transcriptomics-based "mechanomics" platform facilitates spatially resolved analysis of the molecular profiles of cells with respect to their local in vivo mechanical environment by integrating time-lapsed in vivo micro-computed tomography, spatial transcriptomics, and micro-finite element analysis.
View Article and Find Full Text PDFBMC Oral Health
December 2024
Department of Orthodontics, Central Laboratory, Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School, 22th Zhongguancun South Ave, Beijing, 100081, China.
Background: Orthodontic tooth movement (OTM) relies on the remodeling of periodontal tissues, including the periodontal ligament (PDL) and alveolar bone. Collagen remodeling plays a crucial role during this process, allowing for the necessary changes in the PDL's structure and function. Endo180, an urokinase plasminogen activator receptor-associated protein, is a transmembrane receptor regulated collagen remodeling.
View Article and Find Full Text PDFIn Vivo
December 2024
Department of Pharmacology, School of Dentistry, Aichi Gakuin University, Nagoya, Japan;
Background/aim: Gangliosides regulate bone formation and resorption. Bone formation is reduced in mice lacking ganglioside GM2/GD2 synthase due to a decrease in osteoblasts. However, the effects of the loss of complex gangliosides by the deletion of both GM2/GD2 and GD3 synthases are unknown.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical Engineering, Aalto University, P.O. Box 15500, Aalto, FI-00076, Finland.
Engineering plastics are finding widespread applications across a broad temperature spectrum, with additive manufacturing (AM) having now become commonplace for producing aerospace-grade components from polymers. However, there is limited data available on the behavior of plastic AM parts exposed to elevated temperatures. This study focuses on investigating the tensile strength, tensile modulus and Poisson's ratio of parts manufactured using fused filament fabrication (FFF) and polyetheretherketone (PEEK) plastics doped with two additives: short carbon fibers (SCFs) and multi-wall carbon nanotubes (MWCNTs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!