Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Identifying, formalizing, and combining biological mechanisms that implement known brain functions, such as prediction, is a main aspect of research in theoretical neuroscience. In this letter, the mechanisms of spike-timing-dependent plasticity and homeostatic plasticity, combined in an original mathematical formalism, are shown to shape recurrent neural networks into predictors. Following a rigorous mathematical treatment, we prove that they implement the online gradient descent of a distance between the network activity and its stimuli. The convergence to an equilibrium, where the network can spontaneously reproduce or predict its stimuli, does not suffer from bifurcation issues usually encountered in learning in recurrent neural networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1162/NECO_a_00512 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!