Computational studies of the cholesterol transport between NPC2 and the N-terminal domain of NPC1 (NPC1(NTD)).

Biochemistry

Department of Chemistry and Biochemistry and the Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Published: October 2013

The transport of cholesterol from NPC2 to NPC1 is essential for the maintenance of cholesterol homeostasis in late endosomes. On the basis of a rigid docking model of the crystal structures of the N-terminal cholesterol binding domain of NPC1(NTD) and the soluble NPC2 protein, models of the NPC1(NTD)-NPC2-cholesterol complexes at the beginning and the end of the transport as well as the unligated NPC1(NTD)-NPC2 complex were studied using 86 ns MD simulations. Significant differences in the cholesterol binding mode and the overall structure of the two proteins compared to the crystal structures of the cholesterol binding separate units were obtained. Relevant residues for the binding are identified using MM/GBSA calculations and the influence of the mutations analyzed by modeling them in silico, rationalizing the results of previous mutagenesis experiments. From the calculated energies and the NEB (nudged elastic band) evaluation of the cholesterol transfer mechanism, an atomistic model is proposed of the transfer of cholesterol from NPC2 to NPC1(NTD) through the formation of an intermediate NPC1(NTD)-NPC2 complex.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi4005478DOI Listing

Publication Analysis

Top Keywords

cholesterol binding
12
cholesterol
8
cholesterol npc2
8
crystal structures
8
npc1ntd-npc2 complex
8
computational studies
4
studies cholesterol
4
cholesterol transport
4
npc2
4
transport npc2
4

Similar Publications

ABCA1-Super Enhancer RNA Promotes Cholesterol Efflux, Reduces Macrophage-Mediated Inflammation and Atherosclerosis.

JACC Basic Transl Sci

December 2024

Division of Cardiology, Departments of Internal Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.

We describe a previously uncharacterized ATP-binding cassette A1 super enhancer RNA (ABCA1-seRNA)-mediated cholesterol efflux. In addition, it promoted macrophage inflammatory cytokine release, and was causally correlated with coronary artery disease severity. Mechanistically, ABCA1-seRNA upregulated cholesterol efflux by interacting with mediator complex subunit 23 and recruiting retinoid X receptor-alpha and liver X receptor-alpha to promote ABCA1 transcription in a manner.

View Article and Find Full Text PDF

miR-18a-5p/PXR/SREBP2 Was Involved in MAFLD Associated With Methyl Tert-Butyl Ether Among Petrol Station Workers.

Liver Int

February 2025

Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, China.

Background: Metabolic associated fatty liver disease (MAFLD), previously defined as non-alcoholic fatty liver disease (NAFLD), has been shown to be closely related to many environmental pollutants. Lately, we found methyl tert-butyl ether (MTBE), a new environmental pollutant, could increase NAFLD risk in American adults, which still needs more population epidemiological studies to verify, and its pathogenic mechanism is not yet clear.

Methods: We conducted a cross-sectional study among petrol station workers, diagnosed their MAFLD according to internationally recognised diagnostic criteria, assessed the potential association of MTBE exposure with MAFLD risk, and explored the miR-18a-5p/PXR/SREBP2 pathway as possible pathogenic mechanisms in male Wistar rats and HepaRG cells treated with MTBE.

View Article and Find Full Text PDF

Bile acid sequestrant inhibits gluconeogenesis via inducing hepatic cysteine dioxygenase type 1 to reduce cysteine availability.

Am J Physiol Gastrointest Liver Physiol

January 2025

Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104.

Bile acid sequestrants such as cholestyramine (ChTM) are gut-restricted bile acid binding resins that block intestine bile acid absorption and attenuate hepatic bile acid signaling. Bile acid sequestrants induce hepatic bile acid synthesis to promote cholesterol catabolism and are cholesterol lowering drugs. Bile acid sequestrants also reduce blood glucose in clinical trials and are approved drugs for treating hyperglycemia in type-2 diabetes.

View Article and Find Full Text PDF

Unraveling Cholesterol-Dependent Interactions of Alkylphospholipids with Supported Lipid Bilayers.

Langmuir

January 2025

School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Alkylphospholipids are single-chain lipid amphiphiles that possess clinically relevant biological activities driven by membrane-destabilizing interactions. Subtle variations in alkylphospholipid structure can lead to significant differences in their biological effects, yet corresponding membrane interactions remain underexplored. Herein, we employed the quartz crystal microbalance-dissipation (QCM-D) technique to characterize the real-time membrane interactions of three alkylphospholipids-edelfosine, miltefosine, and perifosine-on supported lipid bilayers with varying cholesterol fractions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!