Novel 2-benzothiazole-, 4-pyridine-, and 2- and 4-quinoline-based styryl dyes containing an N-methylbenzoaza-15(18)-crown-5(6)-ether moiety were synthesized. A detailed electronic spectroscopy study revealed high performance of these compounds as optical molecular sensors for alkali and alkaline-earth metal cations. They were shown to considerably surpass analogous chromoionophores based on N-phenylaza-crown ethers regarding both the ionochromism and the cation-binding ability. In addition, they act as fluorescent sensors for the metal cations by demonstrating cation-triggered emission. Upon complexation with Ba(2+), the fluorescence enhancement factor reaches 61. The structural features of dyes and their metal complexes were studied by NMR spectroscopy and X-ray diffraction. The high degree of macrocycle preorganization was found to be one of the factors determining the high cation-binding ability of the sensor molecules based on N-methylbenzoaza-crown ethers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo401555a | DOI Listing |
J Org Chem
October 2013
Photochemistry Center, Russian Academy of Sciences , ul. Novatorov 7A-1, Moscow 119421, Russian Federation.
Novel 2-benzothiazole-, 4-pyridine-, and 2- and 4-quinoline-based styryl dyes containing an N-methylbenzoaza-15(18)-crown-5(6)-ether moiety were synthesized. A detailed electronic spectroscopy study revealed high performance of these compounds as optical molecular sensors for alkali and alkaline-earth metal cations. They were shown to considerably surpass analogous chromoionophores based on N-phenylaza-crown ethers regarding both the ionochromism and the cation-binding ability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!