Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidation is a major problem with respect to wine quality, and winemakers have few tools at their disposal to control it. In this study, the effect of exogenous Fe(II) (bipyridine; Ferrozine) and Fe(III) chelators (ethylenediaminetetraacetic acid, EDTA; phytic acid) on nonenzymatic wine oxidation was examined. The ability of these chelators to affect the formation of 1-hydroxyethyl radicals (1-HER) and acetaldehyde was measured using a spin trapping technique with electron paramagnetic resonance (EPR) and by HPLC-PDA, respectively. The chelators were then investigated for their ability to prevent the oxidative loss of an important aroma-active thiol, 3-mercaptohexan-1-ol (3MH). The Fe(II)-specific chelators were more effective than the Fe(III) chelators with respect to 1-HER inhibition during the early stages of oxidation and significantly reduced oxidation markers compared to a control during the study. However, although the addition of Fe(III) chelators was less effective or even showed an initial pro-oxidant activity, the Fe(III) chelators proved to be more effective antioxidants compared to Fe(II) chelators after 8 days of accelerated oxidation. In addition, it is shown for the first time that Fe(II) and Fe(III) chelators can significantly inhibit the oxidative loss of 3MH in model wine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jf4024504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!