We previously observed that physalins have immunomodulatory properties, as well as antileishmanial and antiplasmodial activities. Here, we investigated the anti-Trypanosoma cruzi activity of physalins B, D, F and G. We found that physalins B and F were the most potent compounds against trypomastigote and epimastigote forms of T. cruzi. Electron microscopy of trypomastigotes incubated with physalin B showed disruption of kinetoplast, alterations in Golgi apparatus and endoplasmic reticulum, followed by the formation of myelin-like figures, which were stained with MDC to confirm their autophagic vacuole identity. Physalin B-mediated alteration in Golgi apparatus was likely due to T. cruzi protease perturbation; however physalins did not inhibit activity of the trypanosomal protease cruzain. Flow cytometry examination showed that cell death is mainly caused by necrosis. Treatment with physalins reduced the invasion process, as well as intracellular parasite development in macrophage cell culture, with a potency similar to benznidazole. We observed that a combination of physalins and benznidazole has a greater anti-T. cruzi activity than when compounds were used alone. These results indicate that physalins, specifically B and F, are potent and selective trypanocidal agents. They cause structural alterations and induce autophagy, which ultimately lead to parasite cell death by a necrotic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0031182013001297 | DOI Listing |
Narra J
December 2024
Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia.
Nephrotic syndrome, a multifaceted medical condition characterized by significant proteinuria, has recently prompted a reorientation of research efforts toward B-cell-mediated mechanisms. This shift underscores the pivotal role played by B-cells in its pathogenesis. The aim of this study was to explore potential therapeutic pathways, with specific attention given to compounds found in , including withanolides, such as physalins, which constitute one of the five distinct withanolide subgroups identified in .
View Article and Find Full Text PDFBioorg Chem
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, People's Republic of China. Electronic address:
To explore potential anti-inflammatory lead compounds, ten new physalin steroids, including three neophysalins (1, 4, and 9) and seven physalins (2, 3, 5-8, and 10), along with eleven known analogs, were isolated from an ethanol extract of the calyx of Physalis alkekengi. The new structures were rigorously determined through comprehensive HRESIMS, 1D/2D-NMR, and X-ray diffraction analysis. Among these compounds, 1 was identified as a new 1,10-seco-neophysalin, and 2 was identified as a new 11,15-cyclo-9,10-seco-physalin characterized by an aromatic A-ring.
View Article and Find Full Text PDFSteroids
December 2024
Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu 180006, India. Electronic address:
Physalis alkekengi L. is recognized as a significant source of various secondary metabolites, particularly C steroidal lactones known as withanolides and physalins, renowned for their therapeutic properties with a rich history in traditional medicine. In this study, we characterized the sequences of key downstream genes (PaFPPS, PaSQS, PaSQE, PaCAS, PaHYD1, and PaDWF5-1) involved in the biosynthesis of withanolides, marking the first characterization of these genes in P.
View Article and Find Full Text PDFImmunopharmacol Immunotoxicol
December 2024
Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea.
Background: Graves' orbitopathy (GO) is an autoimmune condition that causes serious ocular symptoms; its treatment strategies are limited. Physalin A is a phytosterol that has shown various therapeutic properties, including anti-inflammatory and anti-fibrotic effects. In this study, we investigated whether physalin A could inhibit inflammation, fibrosis, hyaluronan (hyaluronic acid) production, and adipogenesis, which are crucial to the pathogenesis of GO.
View Article and Find Full Text PDFPlants (Basel)
September 2024
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
Rydb., a member of the Solanaceae family, is renowned for its diverse secondary metabolites, including physalins and withanolides. The 28-spotted ladybird beetle () is a notorious pest severely damaging Solanaceous crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!