Dynamic contrast enhanced MRI is applied as an adjuvant tool for breast cancer detection, diagnosis, and follow-up of therapy. Despite improvements through the years in achieving higher spatial and temporal resolution, it still suffers from lack of scanning and processing standardization, and consequently, high variability in the radiological evaluation, particularly differentiating malignant from benign lesions. We describe here a hybrid method for achieving standardization of the radiological evaluation of breast dynamic contrast enhanced (DCE)-magnetic resonance imaging (MRI) protocols, based on integrating the model based three time point (3TP) method with principal component analysis (PCA). The scanning and image processing procedures consisted of three main steps: 1. 3TP standardization of the MRI acquisition parameters according to a kinetic model, 2. Applying PCA to test cases and constructing an eigenvectors' base related to the contrast-enhancement kinetics and 3. Projecting all new cases on the eigenvectors' base and evaluating the clinical outcome. Datasets of overall 96 malignant and 26 benign breast lesions were recorded on 1.5T and 3T scanners, using three different MRI acquisition parameters optimized by the 3TP method. The final radiological evaluation showed similar detection and diagnostic ability for the three different MRI acquisition parameters. The area under the curve of receiver operating characteristic analysis yielded a value of 0.88 ± 0.034 for differentiating malignant from benign lesions. This 3TP+PCA hybrid method is fast and can be readily applied as a computer aided diagnostic tool of breast cancer. The underlying principles of this method can be extended to standardize the evaluation of malignancies in other organs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4527468 | PMC |
http://dx.doi.org/10.7785/tcrtexpress.2013.600263 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!