This paper explores the effects of different plasma treatments on low dielectric constant (low-k) materials and the consequences for the growth behavior of atomic layer deposition (ALD) on these modified substrates. An O2 and a He/H2 plasma treatment were performed on SiCOH low-k films to modify their chemical surface groups. Transmission FTIR and water contact angle (WCA) analysis showed that the O2 plasma changed the hydrophobic surface completely into a hydrophilic surface, while the He/H2 plasma changed it only partially. In a next step, in situ X-ray fluorescence (XRF), ellipsometric porosimetry (EP), and Rutherford backscattering spectroscopy (RBS) were used to characterize ALD growth of TiO2 on these substrates. The initial growth of TiO2 was found to be inhibited in the original low-k film containing only Si-CH3 surface groups, while immediate growth was observed in the hydrophilic O2 plasma treated film. The latter film was uniformly filled with TiO2 after 8 ALD cycles, while pore filling was delayed to 17 ALD cycles in the hydrophobic film. For the He/H2 plasma treated film, containing both Si-OH and Si-CH3 groups, the in situ XRF data showed that TiO2 could no longer be deposited in the He/H2 plasma treated film after 8 ALD cycles, while EP measurements revealed a remaining porosity. This can be explained by the faster deposition of TiO2 in the hydrophilic top part of the film than in the hydrophobic bulk which leaves the bulk porous, as confirmed by RBS depth profiling. The outcome of this research is not only of interest for the development of advanced interconnects in ULSI technology, but also demonstrates that ALD combined with RBS analysis is a handy approach to analyze the modifications induced by a plasma treatment on a nanoporous thin film.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la4027738DOI Listing

Publication Analysis

Top Keywords

he/h2 plasma
16
plasma treated
12
treated film
12
ald cycles
12
atomic layer
8
layer deposition
8
deposition tio2
8
low-k films
8
plasma
8
plasma treatment
8

Similar Publications

Low-dielectric-constant SiCOH films fabricated using plasma enhanced chemical vapor deposition (PECVD) are widely used as inter-metallic dielectric (IMD) layers in interconnects of semiconductor chips. In this work, SiCOH films were deposited with 1,1,1,3,5,7,7,7-octamethyl-3,5-bis(trimethylsiloxy)tetrasiloxane (OMBTSTS), and plasma treatment was performed by an inductively coupled plasma (ICP) system with mixture of He and H₂. The values of relative dielectric constant () of the as-deposited SiCOH films ranged from 2.

View Article and Find Full Text PDF

This work explores the multi-element capabilities of inductively coupled plasma-mass spectrometry with collision/reaction cell technology (CCT-ICP-MS) for the simultaneous determination of both spectrally interfered and non-interfered nuclides in wine samples using a single set of experimental conditions. The influence of the cell gas type (i.e.

View Article and Find Full Text PDF

Self-assembled monolayers (SAMs) from an 11-cyanoundecyltrichlorosilane (CN-SAM) precursor were deposited on porous SiCOH low-k dielectrics with three different pore radii, namely, 1.7, 0.7, and lower than 0.

View Article and Find Full Text PDF

Atomic layer deposition of TiO2 on surface modified nanoporous low-k films.

Langmuir

October 2013

Department of Solid State Sciences, COCOON, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium.

This paper explores the effects of different plasma treatments on low dielectric constant (low-k) materials and the consequences for the growth behavior of atomic layer deposition (ALD) on these modified substrates. An O2 and a He/H2 plasma treatment were performed on SiCOH low-k films to modify their chemical surface groups. Transmission FTIR and water contact angle (WCA) analysis showed that the O2 plasma changed the hydrophobic surface completely into a hydrophilic surface, while the He/H2 plasma changed it only partially.

View Article and Find Full Text PDF

We present results of plasma afterglow experiments on ternary electron-ion recombination rate coefficients of H3(+) and D3(+) ions at temperatures from 50 to 300 K and compare them to possible three-body reaction mechanisms. Resonant electron capture into H3* Rydberg states is likely to be the first step in the ternary recombination, rather than third-body-assisted capture. Subsequent interactions of the Rydberg molecules with ambient neutral and charged particles provide the rate-limiting step that completes the recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!