Thickness is one of the fundamental parameters that define the electronic, optical, and thermal properties of two-dimensional (2D) crystals. Phonons in molybdenum disulfide (MoS2) were recently found to exhibit unique thickness dependence due to the interplay between short and long range interactions. Here we report Raman spectra of atomically thin sheets of WS2 and WSe2, isoelectronic compounds of MoS2, in the mono- to few-layer thickness regime. We show that, similar to the case of MoS2, the characteristic A1g and E2g(1) modes exhibit stiffening and softening with increasing number of layers, respectively, with a small shift of less than 3 cm(-1) due to large mass of the atoms. Thickness dependence is also observed in a series of multiphonon bands arising from overtone, combination, and zone edge phonons, whose intensity exhibit significant enhancement in excitonic resonance conditions. Some of these multiphonon peaks are found to be absent only in monolayers. These features provide a unique fingerprint and rapid identification for monolayer flakes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr03052k | DOI Listing |
Chemphyschem
November 2024
Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA.
2D materials have rapidly become the building blocks for the next generation of semiconducting materials and devices, with chemical vapor deposition (CVD) emerging as a prefered method for their synthesis. However, the predictable and reproducible growth of high quality, large 2D monolayers remains challenging. An important facet is controlling the local environment at the surface of the substrate - here, space-confinement techniques have emerged as promising candidates.
View Article and Find Full Text PDFIn this Letter, we report TAMM plasmonic polaritons (TPPs) generated by few-layer MoS with a distributed Bragg reflector (DBR) structure in the terahertz frequency region by utilizing the transfer matrix method (TMM) and finite element method (FEM). By inserting a mono-graphene embedded cavity layer, we realize the graphene-induced mode strong coupling (GCM), which is a strategy of a refractive index sensor by optimizing the cavity layer spacing. By adjusting the chemical potential of graphene, GCM is modulated.
View Article and Find Full Text PDFNature
September 2024
Cavendish Laboratory, University of Cambridge, Cambridge, UK.
Crystallographic phase engineering plays an important part in the precise control of the physical and electronic properties of materials. In two-dimensional transition metal dichalcogenides (2D TMDs), phase engineering using chemical lithiation with the organometallization agent n-butyllithium (n-BuLi), to convert the semiconducting 2H (trigonal) to the metallic 1T (octahedral) phase, has been widely explored for applications in areas such as transistors, catalysis and batteries. Although this chemical phase engineering can be performed at ambient temperatures and pressures, the underlying mechanisms are poorly understood, and the use of n-BuLi raises notable safety concerns.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2024
Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Adv Mater
September 2024
Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, 463-8560, Japan.
Superatomic clusters - assemblies of atoms with various sizes, shapes, and compositions - can form hierarchical architectures that exhibit emergent electronic properties not found in their individual units. In particular, cubic MX clusters of chalcogenides (M = transition metal; X = chalcogen) are recognized as versatile building blocks for 3D structures with tunable morphologies and electronic properties. However, tetrahedral MX clusters rarely assemble into 2D architectures, which could offer a distinct class of functional materials from their 3D analogues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!