The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790240PMC
http://dx.doi.org/10.1038/cr.2013.124DOI Listing

Publication Analysis

Top Keywords

faap24
8
dna-binding activity
8
dna damage
8
damage response
8
fancm/faap24 heterodimer
8
functions
5
dna
5
structure analysis
4
analysis faap24
4
faap24 reveals
4

Similar Publications

PARP inhibitors (PARPi) have received regulatory approval for the treatment of several tumors, including prostate cancer (PCa), and demonstrate remarkable results in the treatment of castration-resistant prostate cancer (CRPC) patients characterized by defects in homologous recombination repair (HRR) genes. Preclinical studies showed that DNA repair genes (DRG) other than HRR genes may have therapeutic value in the context of PARPi. To this end, we performed multiple CRISPR/Cas9 screens in PCa cell lines using a custom sgRNA library targeting DRG combined with PARPi treatment.

View Article and Find Full Text PDF

A double primary colorectal cancer (CRC) in a familial setting signals a high risk of CRC. In order to identify novel CRC susceptibility genes, we whole-exome sequenced germline DNA from nine persons with a double primary CRC and a family history of CRC. The detected variants were processed by bioinformatics filtering and prioritization, including STRING protein-protein interaction and pathway analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has expanded the concept of "FA signaling" to include over 30 proteins involved in DNA Damage Response (DDR), making it the largest cellular defense network against DNA damage.
  • Different human cancers display unique mutational profiles related to DDR/FA signaling, with ATM and BRCA2 being major players across many cancer types, while genes like FANCT predominate in breast and liver cancers.
  • Understanding these mutation patterns is crucial, as they greatly influence patient survival and treatment outcomes, potentially guiding more effective therapeutic strategies for various cancers.
View Article and Find Full Text PDF

Primary immune regulatory disorders (PIRD): expanding the mutation spectrum in Turkey and identification of sixteen novel variants.

Immunol Res

August 2024

Department of Pediatric Health and Diseases, Department of Pediatric Immunology, Faculty of Medicine, Ege University, Izmir, Turkey.

Human Inborn Errors of Immunity (IEIs) encompass a clinically and genetically heterogeneous group of disorders, ranging from mild cases to severe, life-threatening types. Among these, Primary Immune Regulatory Disorders (PIRDs) constitute a subset of IEIs characterized by diverse clinical phenotypes, prominently featuring severe atopy, autoimmunity, lymphoproliferation, hyperinflammation, autoinflammation, and susceptibility to malignancies. According to the latest report from the International Union of Immunological Societies (IUIS), PIRDs arise from mutations in various genes including LYST, RAB27A, AP3B1, AP3D1, PRF1, UNC13D, STX11, STXBP2, FAAP24, SLC7A7, RASGRP1, CD70, CTPS1, RLTPR, ITK, MAGT1, PRKCD, TNFRSF9, SH2DIA, XIAP, CD27 (TNFRSF7), FAS (TNFRSF6), FASLG (TNFSF6), CASP10, CASP8, FADD, LRBA, STAT3, AIRE, ITCH, ZAP70, TPP2, JAK1, PEPD, FOXP3, IL2RA, CTLA4, BACH2, IL2RB, DEF6, FERMT1, IL10, IL10RA, IL10RB, NFAT5, TGFB1, and RIPK1 genes.

View Article and Find Full Text PDF

Background: As a core member of the FA complex, in the Fanconi anemia pathway, FAAP24 plays an important role in DNA damage repair. However, the association between FAAP24 and patient prognosis in AML and immune infiltration remains unclear. The purpose of this study was to explore its expression characteristics, immune infiltration pattern, prognostic value and biological function using TCGA-AML and to verify it in the Beat AML cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!