Increased FGF21 plasma levels in humans with sepsis and SIRS.

Endocr Connect

Service of EndocrinologyDiabetes, Hypertension and Nutrition Laboratory of Intensive CareGeneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland Department of Microbiology and Molecular MedicineFaculty of Medicine, University of Geneva, 1211 Geneva 14, Switzerland.

Published: September 2013

Fibroblast growth factor 21 (FGF21) is a key regulator in glucose and lipid metabolism and its plasma levels have been shown to be increased not only in humans in different situations such as type 2 diabetes, obesity, and nonalcoholic fatty liver disease but also in animal models of sepsis and pancreatitis. FGF21 is considered as a pharmacological candidate in conditions associated with insulin resistance. The aim of this study was to compare FGF21 plasma levels in patients with sepsis, in patients with systemic inflammatory response syndrome (SIRS), and in healthy controls. We measured FGF21 plasma concentrations in 22 patients with established sepsis, in 11 with SIRS, and in 12 healthy volunteers. Here, we show that FGF21 levels were significantly higher in plasma obtained from patients with sepsis and SIRS in comparison with healthy controls. Also, FGF21 levels were significantly higher in patients with sepsis than in those with noninfectious SIRS. FGF21 plasma levels measured at study entry correlated positively with the APACHE II score, but not with procalcitonin levels, nor with C-reactive protein, classical markers of sepsis. Plasma concentrations of FGF21 peaked near the onset of shock and rapidly decreased with clinical improvement. Taken together, these results indicate that circulating levels of FGF21 are increased in patients presenting with sepsis and SIRS, and suggest a role for FGF21 in inflammation. Further studies are needed to explore the potential role of FGF21 in sepsis as a potential therapeutic target.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845842PMC
http://dx.doi.org/10.1530/EC-13-0040DOI Listing

Publication Analysis

Top Keywords

fgf21 plasma
16
plasma levels
16
sepsis sirs
16
patients sepsis
12
fgf21
11
sepsis
9
levels
8
sirs healthy
8
healthy controls
8
plasma concentrations
8

Similar Publications

Genetically Predicted 3-Methoxytyrosine Mediates the Causal Association between Fibroblast Growth Factor 21 and Glioblastoma Multiforme.

J Cancer

January 2025

Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, West Wenhua Rd. 107, Jinan 250012, China.

Glioblastoma multiforme (GBM) is one of the most common brain malignancies characterized by an inflammatory microenvironment and metabolic reprogramming. This study aims to investigate the causal relationship between inflammatory factors (IFs) and GBM, as well as the potential mediating effects of specific plasma metabolites. We used a bidirectional two-sample Mendelian randomization (MR) approach to investigate the causal associations between 91 IFs and GBM.

View Article and Find Full Text PDF

Site-specific analysis and functional characterization of N-linked glycosylation for β-Klotho protein.

Int J Biol Macromol

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Medicine, School of Clinical Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, 21 Sassoon Road, Pokfulam 999077, Hong Kong, China. Electronic address:

β-Klotho (KLB), a type I transmembrane protein, serves as an obligate co-receptor determining the tissue-specific actions of endocrine fibroblast growth factors (FGFs). Despite accumulative evidence suggesting the occurrence of N-glycosylation in the KLB protein, the precise N-glycosites, glycoforms, and the impacts of N-glycosylation on the expression and function of the KLB protein remain unexplored. Employing a mass spectrometry-based approach, a total of 12 N-glycosites displaying heterogeneous site occupancy and glycoforms were identified within the extracellular region of the recombinant human KLB protein.

View Article and Find Full Text PDF

Activation of brown and beige fat biogenesis promotes metabolic health in rodents and humans, but typically requires cold exposure or pharmacological activation of β-adrenergic receptors, which may pose cardiovascular risks. Dietary intervention represents a clinically viable alternative strategy to induce beige cells and thus enhance metabolic health, though the underlying mechanisms remain poorly understood. In this study, we identified specific microbiota members in both mice and humans that promote browning of white adipose tissue (WAT) and ameliorate metabolic disorders in the context of a low-protein diet (LPD).

View Article and Find Full Text PDF

Objective: Inflammation contributes to the development of type 2 diabetes mellitus (T2DM). While South Asians are more prone to develop T2DM than Europids, the inflammatory phenotype of the South Asian population remains relatively unknown. Therefore, we aimed to investigate potential differences in circulating levels of inflammation-related proteins in South Asians compared with Europids with T2DM.

View Article and Find Full Text PDF

FGF21 Signaling Exerts Anti-Fibrotic Properties During Pulmonary Fibrosis.

Am J Respir Crit Care Med

December 2024

Université Paris Cité, Inserm, PHERE, Faculté de Médecine Paris 7, site X. Bichat, Paris, France;

Rationale: Idiopathic Pulmonary Fibrosis (IPF) is a lethal disease with limited therapeutic options. FGF21, an endocrine fibroblast growth factor that acts through the FGFR1/KLB pathway, mitigates liver fibrosis.

Objectives: We hypothesized that FGF21 could exert anti-fibrotic properties in the lung.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!