Large fluorescence enhancement of UV-active molecular models Carbostyril 124 and tryptophan by core-shell indium-based plasmonic architectures demonstrates the metal's potential in the design of bioprobes. Precise control over the metal-fluorophore distance is achieved through the controlled deposition of a uniform silica layer over the nanosized indium particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cc45276j | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Contemporary osteoporosis treatment often neglects the intricate interactions among immune cells, signaling proteins, and cytokines within the osteoporotic microenvironment. Here, we developed core-shell nanocapsules composed of a cationized lactoferrin core and an alendronate polymer shell. By tuning the size of these nanocapsules and leveraging the alendronate shell, we enabled precise delivery of small interfering RNA targeting the Semaphorin 4D gene (siSema4D) to specific bone sites.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Forensic Science, School for Bio Engineering and Bio Sciences, Lovely Professional University, Phagwara, Punjab, India.
The development of pH-directed nanoparticles for tumor targeting represents a significant advancement in cancer biology and therapeutic strategies. These innovative materials have the ability to interact with the unique acidic microenvironment of tumors. They enhance drug delivery, increase therapeutic efficacy, and reduce systemic toxicity.
View Article and Find Full Text PDFThis study investigates (EIG) in a nanohybrid configuration involving a semiconductor quantum dot (SQD) and a core-shell bimetallic nanoparticle coated with graphene. The goal is to optimize interactions between plasmons and excitons. This is achieved by utilizing nanoparticles covered with graphene, which enhances control over surface plasmons.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology, Jinju, Gyeongnam, 52851, Republic of Korea.
All-solid-state batteries (ASSBs) are pursued due to their potential for better safety and high energy density. However, the energy density of the cathode for ASSBs does not seem to be satisfactory due to the low utilization of active materials (AMs) at high loading. With small amount of solid electrolyte (SE) powder in the cathode, poor electrochemical performance is often observed due to contact loss and non-homogeneous distribution of AMs and SEs, leading to high tortuosity and limitation of lithium and electron transport pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!