During pregnancy, the ovine uterine artery changes from a low- to a high-stress artery. We investigated the hypotheses that the increased stress reflects alterations in vessel wall cellularity, smooth muscle cell contractile protein contents, or activation properties. Uterine artery diameter increased during pregnancy, whereas the fractional cellular composition and thickness of the muscularis were unchanged. Results of morphometry suggest that vessel growth is associated with cell elongation. Uterine arteries from pregnant ewes had greater protein contents than those from nonpregnant ewes (104 vs. 69 mg/g, respectively); there were corresponding increases in the absolute cellular contents of actin and myosin. While the fraction of light chain phosphorylated in response to phenylephrine was unaltered, the total amount of myosin light chain phosphorylated per gram wet weight increased significantly during pregnancy. In addition, the distribution of myosin heavy chain isoforms was also altered during pregnancy. The increased stress observed in the uterine artery during ovine pregnancy reflects, in part, increases in cellular contractile protein concentrations associated with hypertrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1990.259.3.C484 | DOI Listing |
Chemistry
January 2025
Zhengzhou University of Light Industry, College of Materials Science and Chemical Engineering, Dongfeng Road, No. 5, 450002, Zhengzhou, CHINA.
In this study, thiolated sodium alginate (SA) and hydrophilic, polymerizable Janus-type polyhedral oligomeric silsesquioxane (AS-POSS) are synthesized by introducing thiol and sulfonic acid groups, respectively. A series of pH-responsive SA/PEGDA/AS-POSS nanocomposite hydrogels are successfully prepared through Michael addition reactions between the thiol groups of thiolated sodium alginate and the double bonds in the molecular chains of AS-POSS and poly(ethylene glycol) diacrylate (PEGDA). This reaction proceeds rapidly under physiological conditions without requiring initiators or catalysts.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China.
Introduction: With the advancement of disease-modifying therapies for Alzheimer's disease (AD), validating plasma biomarkers against cerebrospinal fluid (CSF) and positron emission tomography (PET) standards is crucial in both research and real-world settings.
Methods: We measured plasma phosphorylated tau (p-tau)217, p-tau181, amyloid beta (Aβ)1-40, Aβ1-42, and neurofilament light chain in research and real-world cohorts. Participants were categorized by brain amyloid status using US Food and Drug Administration/European Medicines Agency-approved CSF or PET methods.
Curr Opin Psychiatry
March 2025
Department of Psychiatry, University of Melbourne.
Purpose Of Review: There has been growing interest in the role of biofluid biomarkers to aid the diagnosis of dementia in older people. However, less attention has been given to younger people who have dementia (young-onset dementia), who frequently experience misdiagnoses of primary psychiatric disorders diagnostic delay and challenges accessing appropriate care.
Recent Findings: We describe 12 studies from the previous 2 years of which the majority have investigated the role of neurofilament light chain protein (NfL) in blood and cerebrospinal fluid in distinguishing young-onset dementia from primary psychiatric disorders.
J Exp Biol
January 2025
Laboratory of Function and Evolutionary Morphology, FOCUS, Université de Liège, Liège, Belgique.
The inner ear of teleost fishes is known to serve both auditory and vestibular functions. Many studies have compared otoliths from different species and attempted to understand the observed differences within the light of environmental factors. However, experimental data on how otoliths could adapt are scarce.
View Article and Find Full Text PDFChem Sci
January 2025
School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
The process of proton translocation in , triggered by light, is powered by the photoisomerization of all--retinal in bacteriorhodopsin (bR). The primary events in bR involving rapid structural changes upon light absorption occur within subpicoseconds to picoseconds. While the three-state model has received extensive support in describing the primary events between the H and K states, precise characterization of each excited state in the three-state model during photoisomerization remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!