Although studies have shown that chemokines are pyrogenic when injected into the brain, there are no data indicating which cell types and receptors in the CNS are employed by chemokines such as CCL3 (synonym: MIP-1α) to induce fever in rats. We aimed to study, whether CCL3 induces fever when injected directly into the thermoregulatory center within the pre-optic area (POA). Moreover, we investigated whether CCL3 activates cells from POA microcultures resulting in intracellular Ca++ mobilization and synthesis/release of TNF-α and IL-6. Microinjections of CCL3 into the POA induced a dose-dependent fever, which was accompanied by a decrease in tail skin temperature. The primary microcultures of the POA (from topographically excised rat pup brain tissue) were stimulated by bolus administrations of 100 μl CCL3 (0.1 or 0.01 μg) or sterile PBS as control. We evaluated the responses of 261 (30.89%) neurons, 346 (40.94%) astrocytes and 238 microglia cells (29.17%). Stimulation of rat POA microcultures with CCL3 was capable of inducing Ca++ signaling in 15.31% of all astrocytes and 5.75% of all neurons investigated. No cellular Ca++-signals were observed after overnight incubation of the cultures with antiCCR1 or antiCCR5 antibodies. CCL3 did not alter the release of the pyrogenic cytokines IL-6 or TNF-α into the supernatant of the cultures. In conclusion the present study shows for the first time that CCL-3 injected directly into the rat POA, evoked an integrated febrile response. In parallel this chemokine induces Ca++ signaling in astrocytes and neurons via both CCR1 and CCR5 receptors when administered to POA microcultures without stimulating the synthesis of TNF-α and IL-6. It is a possibility that CCL3-induced fever may occur via CCR1 and CCR5 receptors stimulation of astrocytes and neurons from POA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbi.2013.08.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!