Oncometabolites: linking altered metabolism with cancer.

J Clin Invest

Cancer Biology and Metabolism Group, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.

Published: September 2013

The discovery of cancer-associated mutations in genes encoding key metabolic enzymes has provided a direct link between altered metabolism and cancer. Advances in mass spectrometry and nuclear magnetic resonance technologies have facilitated high-resolution metabolite profiling of cells and tumors and identified the accumulation of metabolites associated with specific gene defects. Here we review the potential roles of such "oncometabolites" in tumor evolution and as clinical biomarkers for the detection of cancers characterized by metabolic dysregulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3754247PMC
http://dx.doi.org/10.1172/JCI67228DOI Listing

Publication Analysis

Top Keywords

altered metabolism
8
metabolism cancer
8
oncometabolites linking
4
linking altered
4
cancer discovery
4
discovery cancer-associated
4
cancer-associated mutations
4
mutations genes
4
genes encoding
4
encoding key
4

Similar Publications

Background: Boswellic acid (BA) is a bioactive compound derived from Boswellia trees. This study aims to investigate the anti-cancer properties of BA against KB oral squamous cancer cells and elucidate the underlying mechanisms.

Methods: Escalating doses of BA were administered to KB cells, and various analyses were conducted using bioinformatic tools such as GEO, GEO2R, and STITCH database.

View Article and Find Full Text PDF

Purpose: A paradoxical increase in GH after oral glucose load (GH-Par) characterizes about one-third of acromegaly patients and is associated with a better response to first-generation somatostatin receptor ligands (fg-SRLs). Pasireotide is typically considered as a second-/third-line treatment. Here, we investigated the predictive role of GH-Par in pasireotide response and adverse event development.

View Article and Find Full Text PDF

Plants respond to attacks by insects by releasing herbivore-induced plant volatiles (HIPVs), which are known to influence the behavior of natural enemies, conspecific and heterospecific insects. However, little is known about how HIPVs induced by one insect species influence the behavior of an allospecific insect species, particularly if these insects belong to different feeding guilds. Here, using the interaction of two co-occurring insects with different feeding guilds - Bemisia tabaci (a sap sucking insect) and Tuta absoluta (a leaf mining insect) - on potato plants, we report that T.

View Article and Find Full Text PDF

Is Drosophila Larval Competition Involved in Incipient Speciation?

J Chem Ecol

January 2025

Centre des Sciences du Goût et de l'Alimentation, UMR-CNRS 6265, INRAe, Université de Bourgogne, Dijon, France.

Geographical, ethological, temporal and ecological barriers can affect interbreeding between populations deriving from an ancestral population, this progressively leading to speciation. A rare case of incipient speciation currently occurs between Drosophila melanogaster populations sampled in Zimbabwe (Z) and all other populations (M). This phenomenon was initially characterized by Z females refusing to mate with M males.

View Article and Find Full Text PDF

Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!