The unique steps in the synthesis of an unusual osmolyte in hyperthermophiles, di-myo-inositol-1,1'-phosphate (DIP), involve the production of CDP-inositol and its condensation with an inositol-1-phosphate molecule to form phosphorylated DIP. While many organisms fuse both activities into a single enzyme, the two are separate in Thermotoga maritima. The crystal structure of the T. maritima inositol-1-phosphate cytidylyltransferase, which as a soluble protein may transiently associate with its membrane-embedded partner phospho-DIP synthase (P-DIPS), has now been obtained. The structure shows a conserved motif of sugar nucleotide transferases (COG1213) with a structurally reinforced C-terminal Cys bonded to the core of the protein. A bound arsenosugar identifies the location of the active site for inositol 1-phosphate. Based on homologous structures from several species and the identification of the crucial conserved aspartate residue, a catalytic mechanism for this enzyme is proposed as well as a mode for its association with P-DIPS. This structure imposes constraints on the mode of association, communication and temperature activation of two separate enzymes in T. maritima. For the first time, a working model for the membrane-bound P-DIPS unit has been constructed. This sheds light on the functioning of the phosphatidylserine and phosphatidylinositol synthases involved in many physiological processes that are homologous to P-DIPS. This work provides fresh insights into the synthesis of the unusual thermoprotective compound DIP in hyperthermophiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0907444913015278 | DOI Listing |
Appl Environ Microbiol
January 2017
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
Unlabelled: Glycerophosphoinositol (GPI) is a compatible solute present in a few hyperthermophiles. Interestingly, different GPI stereoisomers accumulate in Bacteria and Archaea, and the basis for this domain-dependent specificity was investigated herein. The archaeon Archaeoglobus fulgidus and the bacterium Aquifex aeolicus were used as model organisms.
View Article and Find Full Text PDFEnviron Microbiol
July 2015
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República-EAN, Apartado 127, Oeiras, 2780-157, Portugal.
We describe a novel biosynthetic pathway for glycerophosphoinositides in Rhodothermus marinus in which inositol is activated by cytidine triphosphate (CTP); this is unlike all known pathways that involve activation of the lipid group instead. This work was motivated by the detection in the R. marinus genome of a gene with high similarity to CTP:L-myo-inositol-1-phosphate cytidylyltransferase, the enzyme that synthesizes cytidine diphosphate (CDP)-inositol, a metabolite only known in the synthesis of di-myo-inositol phosphate.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
September 2013
Sanford-Burnham Institute for Medical Research, La Jolla, CA 92037, USA.
The unique steps in the synthesis of an unusual osmolyte in hyperthermophiles, di-myo-inositol-1,1'-phosphate (DIP), involve the production of CDP-inositol and its condensation with an inositol-1-phosphate molecule to form phosphorylated DIP. While many organisms fuse both activities into a single enzyme, the two are separate in Thermotoga maritima. The crystal structure of the T.
View Article and Find Full Text PDFEnviron Microbiol
March 2012
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República-EAN, Apartado 127, 2780-157 Oeiras, Portugal.
The synthesis of di-myo-inositol phosphate (DIP), a common compatible solute in hyperthermophiles, involves the consecutive actions of inositol-1-phosphate cytidylyltransferase (IPCT) and di-myo-inositol phosphate phosphate synthase (DIPPS). In most cases, both activities are present in a single gene product, but separate genes are also found in a few organisms. Genes for IPCT and DIPPS were found in the genomes of 33 organisms, all with thermophilic/hyperthermophilic lifestyles.
View Article and Find Full Text PDFJ Bacteriol
May 2011
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal.
Many Archaea and Bacteria isolated from hot, marine environments accumulate di-myo-inositol-phosphate (DIP), primarily in response to heat stress. The biosynthesis of this compatible solute involves the activation of inositol to CDP-inositol via the action of a recently discovered CTP:inositol-1-phosphate cytidylyltransferase (IPCT) activity. In most cases, IPCT is part of a bifunctional enzyme comprising two domains: a cytoplasmic domain with IPCT activity and a membrane domain catalyzing the synthesis of di-myo-inositol-1,3'-phosphate-1'-phosphate from CDP-inositol and L-myo-inositol phosphate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!