The scope of the present study was the preparation and characterization of irinotecan nanocomposite beads based on montmorillonite (Mt) and sodium alginate (AL) as drug carriers. After irinotecan (I) incorporation into Mt, the resulting hybrid was compounded with alginate, and I-Mt-AL nanocomposite beads were obtained by ionotropic gelation technique. The structure and surface morphology of the hybrid and composite materials were established by means of X-ray diffraction (XRD), IR spectroscopy (FT-IR), thermal analysis (TG-DTA) and scanning electron microscopy (SEM). Irinotecan incorporation efficiency in Mt and in alginate beads was determined both by UV-vis spectroscopy and thermal analysis and was found to be high. The hybrid and composite materials were tested in vitro in simulated intestinal fluid (pH 7.4, at 37 °C) in order to establish if upon administering the beads at the site of a resected colorectal tumor, the delivery of the drug is sustained and can represent an alternative to the existing systemic chemotherapy. The in vitro drug release test results clearly suggested that Mt, and Mt along with AL were able to control the release of irinotecan by making it sustained, without any burst effect, and by reducing the released amount and the release rate. The nanocomposite beads may be a promising drug delivery system in chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2013.08.043 | DOI Listing |
Talanta
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, PR China. Electronic address:
E-selectin (CD62E) is an adhesion molecule expressed on the surface of endothelial cells (ECs) and its level increases significantly upon the stimulation of ECs by inflammatory factors. Quantitative analysis of CD62E is of great importance to early diagnosis and treatment of vascular diseases and hypertension. A new method for the determination of CD62E was developed using a portable pH meter in this work.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, 27002, Lugo, Spain.
The primary goal of the current work was to construct pH-sensitive nano and microcomposite hydrogel beads based on alginate (AL), carboxymethyl cellulose (CMC), biochar (BC), and two Moroccan clays: Ghassoul (swelling SW) and red (not swelling NSW) nano and microhybrid. The adsorbents, SW + AL, SW + AL + BC, SW + AL + CMC, NSW + AL, NSW + AL + BC, NSW + AL + CMC, AL, and AL + CMC were prepared for the adsorption of the antibiotic sulfadiazine (SDZ). The test samples were characterized using a variety of techniques, including X-Ray Diffraction (XRD), IR spectroscopy (FT-IR), and scanning electron microscopy (SEM), with the molecular structures of the studied additives geometrically optimized using the DFT/B3LYP method and the function 6-311G(d).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India. Electronic address:
Int J Biol Macromol
December 2024
Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran.
Hydrogels are adaptable substances with a 3D framework able to hold large quantities of water, which is why they are ideal for use in the field of biomedicine. This research project focused on creating a new hydrogel combining carboxymethyl chitosan (CMCS), graphene quantum dots (GQDs), pectin (Pe), and MIL-88 for precise and controlled release of the cancer drug doxorubicin (DOX). The creation of CMCS/GQDs@Pe/MIL-88 hydrogel beads was achieved through an eco-friendly one-step synthesis method.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China.
The development of a sustainable and eco-friendly silver-based hybrid nanocomposite for safe and efficient point-of-use (POU) water disinfection remains a challenge. Herein, a simple and facile approach was proposed for the in situ immobilization of silver nanoparticles (AgNPs) on chitosan-g-poly (sulfobetaine methacrylate) (CS-g-PSBMA) hydrogel beads, which have been achieved via graft copolymerization of sulfobetaine methacrylate along the chitosan chains followed by a drop method. The AgNPs-decorated CS-g-PSBMA hydrogel beads were characterized and their bactericidal efficacy towards Escherichia coli was evaluated concurrently with their anti-biofouling behaviors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!