Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Biotechnology, School of Life Sciences, Karpagam University, Eachanari post, Coimbatore 641 021, Tamil Nadu, India.

Published: December 2013

Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2013.08.012DOI Listing

Publication Analysis

Top Keywords

cow dung
12
gas chromatography-mass
8
chromatography-mass spectroscopy
8
parthenium mediated
8
mediated vermicompost
8
parthenin toxin
8
fourier transform-infrared
4
spectroscopy
4
transform-infrared spectroscopy
4
spectroscopy gas
4

Similar Publications

infections can significantly impact the health and productivity of dairy cattle. Asymptomatic carriage of can make it difficult to identify and monitor this pathogen across a herd. Therefore, a more focused census on dairy farms is needed to better understand the dynamics of asymptomatic carriage.

View Article and Find Full Text PDF

Dung Beetles, Dung Burial, and Plant Growth: Four Scarabaeoid Species and Sorghum.

Insects

December 2024

Laboratoire de Biotechnologie, Conservation et Valorisation des Ressources Naturelles, Faculté des Sciences de Dhar El Mehraz, Université Sidi Mohamed Ben Abdellah, B.P. 1796 Fès-Atlas, Fez 30000, Morocco.

This study examined the impact of dung beetles on both sorghum growth and the physico-chemical properties of the soil over a two-month period. Four dung beetle species (, subsp. , , and ) were introduced into experimental setups, consisting of containers filled with sterilised clay-loam soil, with three treatment groups: [cow dung + beetles], [cow dung only], and a control group (no dung nor beetles), in order to evaluate their effects on various growth parameters, including the plant height, biomass, leaf area, and chlorophyll concentration.

View Article and Find Full Text PDF

Dung beetles mostly feed on mammal dung. Throughout the European Alps, the dung produced by local domestic ungulates attracts many species of dung beetles, giving rise to rich and diversified communities that play an important role in the Alpine agricultural ecosystem. There is, therefore, understandable concern about the introduction of exotic livestock, such as alpacas ( (Linnaeus, 1758)), into the region.

View Article and Find Full Text PDF

When ingested as part of a blood meal, the antiparasitic drug ivermectin kills mosquitoes, making it a candidate for mass drug administration (MDA) in humans and livestock to reduce malaria transmission. When administered to livestock, most ivermectin is excreted unmetabolized in the dung within 5 days post administration. Presence of ivermectin, has been shown to adversely affect dung colonizers and dung degradation in temperate settings; however, those findings may not apply to, tropical environment, where ivermectin MDA against malaria would occur.

View Article and Find Full Text PDF
Article Synopsis
  • Anaerobic digestion is an eco-friendly process that converts waste into energy, and this study specifically looks at khat and cow dung as potential feedstocks.
  • The experiment involved running batch anaerobic reactors for 27 days to measure bio-methane production, revealing that mixtures with more khat produced the highest methane yields.
  • The findings suggest that combining khat waste with cow dung enhances biomethane production through a synergistic effect, making it an effective waste-to-energy solution.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!