Osmotic stress alters the balance between organic and inorganic solutes in flax (Linum usitatissimum).

J Plant Physiol

Université de Picardie Jules Verne, EA 3900-BioPI Biologie des Plantes et Innovation, IUT d'Amiens, Département Génie Biologique, Avenue des Facultés, Le Bailly et Faculté de Pharmacie, 1, rue des Louvels, 80025 Amiens cedex, France.

Published: January 2014

Flax (Linum usitatissimum) is grown for its oil and its fiber. This crop, cultivated in temperate regions, has seen a renewed interest due to the presence of abundant molecules of interest for many applications. Little information is available about the behavior of flax during osmotic stress; yet this is considered a major stress that causes significant yield losses in most crops. To control the presence of this stress better, flax behavior was investigated following the application of osmotic stress and the response was examined by applying increasing concentrations of PEG 8000. This resulted in the reorganization of 32 metabolites and 6 mineral ions in the leaves. The analysis of these two types of solute highlighted the contrasting behavior between a higher metabolite content (particularly fructose, glucose and proline) and a decrease in mineral ions (especially nitrate and potassium) following PEG treatment. However, this reorganization did not lead to a greater accumulation of solutes, with the total amount remaining unchanged in leaves during osmotic stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2013.07.006DOI Listing

Publication Analysis

Top Keywords

osmotic stress
16
flax linum
8
linum usitatissimum
8
mineral ions
8
stress
5
osmotic
4
stress alters
4
alters balance
4
balance organic
4
organic inorganic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!