Beta-amyloid (1-40) is one of the two most abundant species of amyloid-beta peptides present as fibrils in the extracellular senile plaques in the brain of Alzheimer's patients. Recently, the molecular aggregates constituting the early stage of fibril formation, i.e., oligomers and protofibrils, have been investigated as the main responsible for amyloid-beta cytotoxic effect. The molecular mechanism leading to neurodegeneration is still under debate, and it is common opinion that it may reside in the interaction between amyloid species and the neural membrane. In this investigation Atomic Force Microscopy and spectroscopy have been used to understand how structural (and mechanical) properties of POPC/POPS lipid bilayers, simulating the phospholipid composition and negative net charge of neuritic cell membranes, are influenced by the interaction with Aβ(1-40), in different stages of the peptide aggregation. Substantial differences in the damage caused to the lipid bilayers have been observed, confirming the toxic effect exerted especially by Aβ(1-40) prefibrillar oligomers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2013.07.010DOI Listing

Publication Analysis

Top Keywords

lipid bilayers
8
effects alzheimer's
4
alzheimer's peptide
4
peptide aβ1-40
4
aβ1-40 oligomers
4
oligomers fibrils
4
fibrils supported
4
supported lipid
4
lipid membranes
4
membranes beta-amyloid
4

Similar Publications

How well do empirical molecular mechanics force fields model the cholesterol condensing effect?

J Chem Phys

January 2025

School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.

Membrane properties are determined in part by lipid composition, and cholesterol plays a large role in determining these properties. Cellular membranes show a diverse range of cholesterol compositions, the effects of which include alterations to cellular biomechanics, lipid raft formation, membrane fusion, signaling pathways, metabolism, pharmaceutical therapeutic efficacy, and disease onset. In addition, cholesterol plays an important role in non-cellular membranes, with its concentration in the skin lipid matrix being implicated in several skin diseases.

View Article and Find Full Text PDF

We demonstrate, using non-equilibrium molecular dynamics simulations, that lipid membrane capacitance varies with surface charge accumulation linked to membrane shape and curvature changes. Specifically, we show that lipid membranes exhibit a hysteretic response when exposed to oscillatory electric fields. The electromechanical coupling in these membranes leads to hysteretic buckling, in which the membrane can spontaneously buckle in one of two distinct directions along the electric field, even for the same ionic charge accumulation at the water-membrane interface.

View Article and Find Full Text PDF

Unlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).

View Article and Find Full Text PDF

Ultrasound-assisted efficient targeting of doxorubicin to the tumor microenvironment by lyso-thermosensitive liposomes of varying phase transition temperatures.

Eur J Pharm Sci

January 2025

Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Premature drug release is the primary hindrance to the effective function of the lyso-thermosensitive liposomes (LTSLs) of doxorubicin (Dox), known as ThermoDox® for the treatment of cancer. Herein, we have optimized LTSLs by using a combination of phospholipids (PLs) with high transition temperatures (Tm) to improve the therapeutic outcome in an assisted ultrasound approach. For this, several Dox LTSLs were prepared using the remote loading method at varying molar ratios (0 to 90 %) of DPPC (Tm 41 °C) and HSPC (Tm 54.

View Article and Find Full Text PDF

SARS-CoV-2 viral entry requires membrane fusion, which is facilitated by the fusion peptides within its spike protein. These predominantly hydrophobic peptides insert into target membranes; however, their precise mechanistic role in membrane fusion remains incompletely understood. Here, we investigate how FP1 (SFIEDLLFNKVTLADAGFIK), the N-terminal fusion peptide, modulates membrane stability and barrier function across various model membrane systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!