Update on the challenging role of biofilms in peritoneal dialysis.

Biofouling

IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal.

Published: September 2013

Biofilms are commonly associated with an increased risk of patient infection. In peritoneal dialysis (PD), catheter associated infection, especially peritonitis, remains a clinically relevant problem. Although the presence of a biofilm is recognized in relapsing, repeat, and catheter-related peritonitis, it remains poorly characterized. In this review, an update on the role of biofilms in PD infections is presented. The emerging concept that host cells and tissue associated biofilms, in addition to the biofilms on the catheters themselves, contribute to the recalcitrance of infections is discussed. Furthermore, the evidence of biofilms on PD catheters, their developmental stages, and the possible influence of the PD environment are reviewed. The focus is given to ex vivo and in vitro studies that contribute to the elucidation of the interplay between host, microbial, and dialysis factors. The key issues that are still to be answered and the challenges to clinical practice are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2013.824566DOI Listing

Publication Analysis

Top Keywords

role biofilms
8
peritoneal dialysis
8
peritonitis remains
8
biofilms catheters
8
biofilms
6
update challenging
4
challenging role
4
biofilms peritoneal
4
dialysis biofilms
4
biofilms commonly
4

Similar Publications

Unlabelled: Dental caries remains a prevalent chronic disease driven by dysbiosis in the oral biofilm, with playing a central role in its pathogenesis.

Objective: This study aimed to assess the effect of D-tagatose on cariogenic risk by analyzing randomized clinical trials (RCTs).

Methods: A systematic literature review was conducted targeting RCTs published up to 2024 in eight databases and two gray literature sources.

View Article and Find Full Text PDF

Acylase-Based Coatings on Sandblasted Polydimethylsiloxane-Based Materials for Antimicrobial Applications.

Polymers (Basel)

January 2025

Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal.

Indwelling medical devices, such as urinary catheters, often experience bacterial colonization, forming biofilms that resist antibiotics and the host's immune defenses through quorum sensing (QS), a chemical communication system. This study explores the development of antimicrobial coatings by immobilizing acylase, a quorum-quenching enzyme, on sandblasted polydimethylsiloxane (PDMS) surfaces. PDMS, commonly used in medical devices, was sandblasted to increase its surface roughness, enhancing acylase attachment.

View Article and Find Full Text PDF

Biochemistry of Bacterial Biofilm: Insights into Antibiotic Resistance Mechanisms and Therapeutic Intervention.

Life (Basel)

January 2025

Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.

Biofilms, composed of structured communities of bacteria embedded in a self-produced extracellular matrix, pose a significant challenge due to their heightened resistance to antibiotics and immune responses. This review highlights the mechanisms underpinning antibiotic resistance within bacterial biofilms, elucidating the adaptive strategies employed by microorganisms to withstand conventional antimicrobial agents. This encompasses the role of the extracellular matrix, altered gene expression, and the formation of persister cells, contributing to the recalcitrance of biofilms to eradication.

View Article and Find Full Text PDF

Phytochrome-interacting factors (PIFs) play a crucial role in regulating plant growth and development. However, studies on soybean PIFs are limited. Here, we identified 22 GmPIF genes from the soybean genome and classified the GmPIF proteins into 13 subfamilies based on amino acid sequence homology, secondary and tertiary structures, protein structure, and conserved motifs.

View Article and Find Full Text PDF

Oral diseases, particularly dental caries and periodontal disease, pose significant global health challenges. The imbalance of the oral microbiota plays a key role in the occurrence of these diseases, prompting researchers to seek new strategies to restore oral ecological balance. is a Gram-positive rod-shaped bacterium that exists in various body parts of humans, including the gastrointestinal tract, urinary tract, skin, and so on.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!