The blood-brain barrier (BBB), a dynamic and complex barrier formed by endothelial cells, can impede the entry of unwanted substances - pathogens and therapeutic molecules alike - into the central nervous system (CNS) from the blood circulation. Taking into account the fact that CNS-related diseases are the largest and fastest growing unmet medical concern, many potential protein- and nucleic acid-based medicines have been developed for therapeutic purposes. However, due to their poor ability to cross the BBB and the plasma membrane, the above-mentioned bio-macromolecules have limited use in treating neurological diseases. Finding effective, safe, and convenient ways to deliver therapeutic molecules into the CNS is thus urgently required. In recent decades, much effort has been expended in the development of drug delivery technologies, of which cell-penetrating peptides (CPPs) have the most promising potential. The present review covers the latest advances in CPP delivery technology, and provides an update on their use in CNS-targeted drug delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637673 | PMC |
http://dx.doi.org/10.2174/1570159X11311020006 | DOI Listing |
Neuro Oncol
January 2025
Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
Background: Central nervous system (CNS) tumors lead to cancer-related mortality in children. Genetic ancestry-associated cancer prevalence and outcomes have been studied, but is limited.
Methods: We performed genetic ancestry prediction in 1,452 pediatric patients with paired normal and tumor whole genome sequencing from the Open Pediatric Cancer (OpenPedCan) project to evaluate the influence of reported race and ethnicity and ancestry-based genetic superpopulations on tumor histology, molecular subtype, survival, and treatment.
Virchows Arch
January 2025
Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
Germline genetic alterations and their associated cancer predisposition syndromes (CPS) are an important cause of pediatric cancer. Early recognition is of great importance for targeted surveillance, early detection, and prompt (personalized) therapeutic interventions. This review provides an overview of non-central nervous system solid pediatric tumor types, in relation to their associated CPS, with an emphasis on their histology.
View Article and Find Full Text PDFJ Virol
January 2025
Laboratory for Emerging Viral Zoonoses, WOAH Reference Laboratory for Rabies, FAO and National Reference Centre for Rabies, Department for Research and Innovation, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy.
Unlabelled: The genus includes seventeen viral species able to cause rabies, an acute and almost invariably fatal encephalomyelitis of mammals. Rabies virus (RABV), which represents the type species of the genus, is a multi-host pathogen that over the years has undergone multiple events of host-switching, thus occupying several geographical and ecological niches. In contrast, non-RABV lyssaviruses are mainly confined within a single natural host with rare spillover events.
View Article and Find Full Text PDFMedicines (Basel)
January 2025
Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths.
View Article and Find Full Text PDFNoncoding RNA
January 2025
Department for Systems Medicine and Epigenetics, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.
Aging leads to cognitive decline and increased risk of neurodegenerative diseases. While molecular changes in central nervous system (CNS) cells contribute to this decline, the mechanisms are not fully understood. Long non-coding RNAs (lncRNAs) are key regulators of cellular functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!