This study examined the chemical composition of A. blasiliensis and the chemical structural properties of an immuno-stimulating polysaccharide. The amino acids, free sugars, and organic acids by HPLC and fatty acids by GC were analyzed. The immuno-stimulating substance from A. blasiliensis was extracted with hot water and purified by ethanol precipitation. It underwent ion exchange chromatography on DEAE-cellulose and gel filtration on Toyopearl HW 65F. Through GP-HPLC, the substance was found to be homogeneous. Its chemical structure was determined by (13)C-NMR. Fatty acids, organic acids, and sugar alcohol composition consisted exclusively of linoleic acid, fumaric acid and mannitol, respectively. The amino acids were mainly glutamic acid, glycine, and arginine. By (13)C-NMR analysis, the immuno-stimulating substance was identified as β-(1→3) (1→6)-glucan, composed of a backbone with (1→3)-linked D-glucopyranosyl residues branching a (1→6)-linked D-glucopyranosyl residue. The β-glucan from A. blasiliensis showed pronounced immuno-stimulating activity on the antibody-production ability of B-lymphocytes by the hemolytic suspension assay. In these results, A. blasiliensis was estimated to have potent pharmacological properties and potential nutritional values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755252PMC
http://dx.doi.org/10.4489/MYCO.2008.36.1.050DOI Listing

Publication Analysis

Top Keywords

amino acids
8
organic acids
8
fatty acids
8
immuno-stimulating substance
8
acids
6
analysis chemical
4
chemical constituents
4
constituents agaricus
4
agaricus brasiliensis
4
brasiliensis study
4

Similar Publications

Intermittent fasting (IF) has been shown to ameliorate inflammation including DSS-induced colitis. It is well known that autophagy can limit inflammation and TFEB is a master transcriptional factor that regulates the processes of autophagy. However, whether TFEB is involved in the regulation of IF-mediated amelioration of inflammation and its mechanism remained unclear.

View Article and Find Full Text PDF

The sodium-dependent membrane transporter SLC6A15 (BAT2) belongs to the SLC6 family, which comprises carriers of amino acids and monoamines. BAT2 is expressed in the central nervous system (CNS), including the glutaminergic and GABAergic system. SLC6A15 supplies neurons with neutral amino acids.

View Article and Find Full Text PDF

African swine fever (ASF) has widely spread around the world in the last 100 years since its discovery. The African swine fever virus (ASFV) particles are made of more than 150 proteins, with the p17 protein encoded by the D117L gene serving as one of the major capsid proteins and playing a crucial role in the virus's morphogenesis and immune evasion. Thus, monoclonal antibody (mAb) targeting p17 is important for the research and detection of ASFV infection.

View Article and Find Full Text PDF

Poultry represents a rich source of multiple nutrients. Refrigeration is commonly employed for poultry preservation, although extended storage duration can adversely affect the meat quality. Current research on this topic has focused on the analysis of biochemical indices in chilled goose meat, with limited information on changes in metabolites that influence the quality of the meat during storage.

View Article and Find Full Text PDF

Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV at positions 347 and 349 in the hemagglutinin-neuraminidase (HN) protein, with PPMV-1 predominantly exhibiting glycine (G) at position 347 and glutamic acid (E) at position 349, while most chicken-origin NDVs show E at position 347 and aspartic acid (D) at position 349. However, the impact of these amino acid substitutions remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!